Skip to main content

Neurotoxicity of Methamphetamine

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Recreational consumption of the highly addictive psychostimulant methamphetamine is becoming a serious public health problem worldwide. Recent estimates indicate that methamphetamine abuse has increased in the last decade and that only cannabis is used by a greater number of consumers. Despite its popularity, methamphetamine is a known neurotoxin that damages dopaminergic terminals in the striatum, as indicated by reductions in striatal levels of dopamine and its metabolites and a sustained decrease in the expression of markers for dopaminergic terminals such as TH and DAT. In addition, methamphetamine affects the cell bodies of these same dopaminergic neurons in the substantia nigra, resulting in cell loss. The mechanisms underlying dopaminergic neurotoxicity are the focus of intense research, and knowledge in this area has expanded in recent decades. Evidence from previous studies points to dysregulation of dopamine, oxidative stress, DNA damage, and mitochondrial dysfunction as the main causes of methamphetamine neurotoxicity. The dopamine receptors D1 and D2 also play an important role in methamphetamine-induced neurotoxicity since inactivation of either receptor is neuroprotective against methamphetamine. Recent results from clinical research indicate that methamphetamine abusers have a higher risk of developing Parkinson’s disease; this is in keeping with results in laboratory animals and confirms the persistence of methamphetamine-induced dopaminergic injury. These findings suggest that neuroprotective strategies that are effective against methamphetamine-induced toxicity are also promising candidates for preventive therapy for Parkinson’s disease and other persistent dopaminergic injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATS:

Amphetamine-type stimulants

D1R−/− :

D1R knockout mice

D1R:

Dopamine D1 receptor

D2R−/− :

D2R knockout mice

D2R:

Dopamine D2 receptor

DAT:

Dopamine transporter

DOPAC:

3,4-Dihydroxyphenylacetic acid

Gclm:

γ-Cysteine ligase modulatory subunit

Gclc:

γ-Cysteine ligase catalytic subunit

GPx:

Glutathione peroxidase

HVA:

Homovanillic acid

MDMA:

3,4-Methylendioxymethamphetamine also called “ecstasy”

Nrf2:

Nuclear factor-erythroid 2-related factor 2

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SNpc:

Substantia nigra pars compacta

TH:

Tyrosine hydroxylase

VMAT2:

Vesicular monoamine transporter

References

  • Albers, D. S., & Sonsalla, P. K. (1995). Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: Pharmacological profile of protective and nonprotective agents. The Journal of Pharmacology and Experimental Therapeutics, 275, 1104–1114. http://www.ncbi.nlm.nih.gov/pubmed/8531070.

  • Ares-Santos, S., Granado, N., Oliva, I., O’Shea, E., Martin, E. D., Colado, M. I., & Moratalla, R. (2012). Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiology of Disease, 45(2), 810–820. http://www.ncbi.nlm.nih.gov/pubmed/22115942.

  • Ares-Santos S, Granado N, Moratalla R. (2013). The role of dopamine receptors in the neurotoxicity of methamphetamine. Journal of Internal Medicine, 273, 437–453.

    Article  CAS  PubMed  Google Scholar 

  • Asanuma, M., Hayashi, T., Ordonèz, S. V., Ogawa, N., & Cadet, J. L. (2000). Direct interactions of methamphetamine with the nucleus. Brain Research. Molecular Brain Research, 80(2), 237–243. http://www.ncbi.nlm.nih.gov/pubmed/11038257

  • Bourque, M., Bin Liu, Dluzen, D. E., & Di Paolo, T. (2007). Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity. Biochemical Pharmacology, 74(9), 1413–1423. http://www.ncbi.nlm.nih.gov/pubmed/17825264.

  • Bowyer, J. F., Davies, D. L., Schmued, L., Broening, H. W., Newport, G. D., Slikker, W., & Holson, R. R. (1994). Further studies of the role of hyperthermia in methamphetamine neurotoxicity. The Journal of Pharmacology and Experimental Therapeutics, 268(3), 1571–1580. http://www.ncbi.nlm.nih.gov/pubmed/8138969.

  • Brown, J. M., Quinton, M. S., & Yamamoto, B. K. (2005). Methamphetamine-induced inhibition of mitochondrial complex II: Roles of glutamate and peroxynitrite. Journal of Neurochemistry, 95(2), 429–436. http://www.ncbi.nlm.nih.gov/pubmed/16086684.

  • Butterfield, D. A, Reed, T., & Sultana, R. (2011). Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radical Research, 45(1), 59–72. http://www.ncbi.nlm.nih.gov/pubmed/20942567.

  • Cadet, J. L., & Krasnova, I. N. (2009). Molecular bases of methamphetamine-induced neurodegeneration. International Review of Neurobiology, 88, 101–119. (1st ed.). Elsevier. http://www.ncbi.nlm.nih.gov/pubmed/19897076.

  • Chan, P., Di Monte, D. A., Luo, J. J., DeLanney, L. E., Irwin, I., & Langston, J. W. (1994). Rapid ATP loss caused by methamphetamine in the mouse striatum: Relationship between energy impairment and dopaminergic neurotoxicity. Journal of Neurochemistry, 62(6), 2484–2487. http://www.ncbi.nlm.nih.gov/pubmed/8189253.

  • Chen, J., Rusnak, M., Luedtke, R. J., & Sidhu, A. (2004). D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. The Journal of Biological Chemistry, 279(38), 39317–3930. http://www.ncbi.nlm.nih.gov/pubmed/15247297.

  • Chen, P.-C., Vargas, M. R., Pani, A. k., Smeyne, R. J., Johnson, D. A., Yuet Wai Kan, & Johnson, J. A. (2009). Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2933–2938. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2650368&tool=pmcentrez&rendertype=abstract.

  • Clark, J., & Simon, D. K. (2009). Transcribe to survive: Transcriptional control of antioxidant defense programs for neuroprotection in Parkinson’s disease. Antioxidants & Redox Signaling, 11(3), 509–528. http://www.ncbi.nlm.nih.gov/pubmed/18717631.

  • Clark, K. H., Wiley, C. A., & Bradberry, C. W. (2013). Psychostimulant abuse and neuroinflammation: Emerging evidence of their interconnection. Neurotoxicity Research, 23(2), 174–188. http://www.ncbi.nlm.nih.gov/pubmed/22714667.

  • D’Astous, M., Mickley, K. R., Dluzen, D. E., & Di Paolo, T. (2005). Differential protective properties of estradiol and tamoxifen against methamphetamine-induced nigrostriatal dopaminergic toxicity in mice. Neuroendocrinology, 82(2), 111–120. http://www.ncbi.nlm.nih.gov/pubmed/16446547.

  • Darmopil, S., Martín, A. B., De Diego, I. R., Ares, S., & Moratalla, R. (2009). Genetic inactivation of dopamine D1 but not D2 receptors inhibits l-DOPA-induced dyskinesia and histone activation. Biological Psychiatry, 66(6), 603–613. http://www.ncbi.nlm.nih.gov/pubmed/19520364.

  • Degenhardt, L., Baker, A., & Maher, L. (2008). Methamphetamine: Geographic areas and populations at risk, and emerging evidence for effective interventions. Drug and Alcohol Review, 27(3), 217–219. http://www.ncbi.nlm.nih.gov/pubmed/18368601.

  • Deng, X., & Cadet, J. L. (2000). Methamphetamine-induced apoptosis is attenuated in the striata of copper-zinc superoxide dismutase transgenic mice. Brain Research. Molecular Brain Research, 83(1–2), 121–124. http://www.ncbi.nlm.nih.gov/pubmed/11072101.

  • Dluzen, D. E. (2004). The effect of gender and the neurotrophin, BDNF, upon methamphetamine-induced neurotoxicity of the nigrostriatal dopaminergic system in mice. Neuroscience letters, 359(3), 135–138. http://www.ncbi.nlm.nih.gov/pubmed/15050682.

  • Eisch, A. J., & Marshall, J. F. (1998). Methamphetamine neurotoxicity: Dissociation of striatal dopamine terminal damage from parietal cortical cell body injury. Synapse (New York, N.Y.), 30(4), 433–445. http://www.ncbi.nlm.nih.gov/pubmed/9826235.

  • Eyerman, D. J., & Yamamoto, B. K. (2005). Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum. The Journal of Pharmacology and Experimental Therapeutics, 312(1), 160–169. http://www.ncbi.nlm.nih.gov/pubmed/15331654.

  • Fleckenstein, A. E., Metzger, R. R., Beyeler, M. L., Gibb, J. W., & Hanson, G. R. (1997). Oxygen radicals diminish dopamine transporter function in rat striatum. European Journal of Pharmacology, 334(1), 111–114. http://www.ncbi.nlm.nih.gov/pubmed/9346337.

  • Fumagalli, F., Gainetdinov, R. R., Valenzano, K. J., & Caron, M. G. (1998). Role of dopamine transporter in methamphetamine-induced neurotoxicity: Evidence from mice lacking the transporter. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(13), 4861–4869. http://www.ncbi.nlm.nih.gov/pubmed/9634552.

  • Granado, N., O’Shea, E., Bove, J., Vila, M., Colado, M. I., & Moratalla, R. (2008a). Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. Journal of Neurochemistry, 107(4), 1102–1112. http://www.ncbi.nlm.nih.gov/pubmed/18823368.

  • Granado, N., Ortiz, O., Suárez, L. M., Martín, E. D., Ceña, V., Solís, J. M., & Moratalla, R. (2008b). D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-Induced arc and zif268 expression in the hippocampus. Cerebral Cortex (New York, N.Y.: 1991), 18(1), 1–12. http://www.ncbi.nlm.nih.gov/pubmed/17395606.

  • Granado, N., Ares-Santos, S., O’Shea, E., Vicario-Abejón, C., Colado, M. I., & Moratalla, R. (2010). Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration: Early loss of TH in striosomes after methamphetamine. Neurotoxicity Research, 18(1), 48–58. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2875475&tool=pmcentrez&rendertype=abstract.

  • Granado, N., Ares-Santos, S., Oliva, I., O’Shea, E., Martin, E. D., Colado, M. I., & Moratalla, R. (2011a). Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiology of Disease, 42(3), 391–403. http://www.ncbi.nlm.nih.gov/pubmed/21303698.

  • Granado, N., Lastres-Becker, I., Ares-Santos, S., Oliva, I., Martin, E., Cuadrado, A., & Moratalla, R. (2011b). Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia, 59(12), 1850–1863. http://www.ncbi.nlm.nih.gov/pubmed/21882243.

  • Hirata, H., Ladenheim, B., Carlson, E., Epstein, C., & Lud, J. (1996). Dopaminergic loss in mouse brain: Attenuation in CuZn-superoxide dismutase transgenic mice. Brain Res, 714, 95–103.

    Google Scholar 

  • Hirata, H., Asanuma, M., & Cadet, J. L. (1998). Superoxide radicals are mediators of the effects of methamphetamine on Zif268 (Egr-1, NGFI-A) in the brain: Evidence from using CuZn superoxide dismutase transgenic mice. Brain Research. Molecular Brain Research, 58(1–2), 209–216. http://www.ncbi.nlm.nih.gov/pubmed/9685645

  • Hurtig, H. I., Trojanowski, J. Q., Galvin, J., Ewbank, D., Schmidt, M. L., Lee, V. M., Clark, C. M., Glosser, G., Stern, M. B., Gollomp, S. M., & Arnold, S. E. (2000). Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology, 54(10), 1916–1921. http://www.ncbi.nlm.nih.gov/pubmed/10822429.

  • Itzhak, Y., Gandia, C., Huang, P. L., & Ali, S. F. (1998). Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. The Journal of Pharmacology and Experimental Therapeutics, 284(3), 1040–1047. http://www.ncbi.nlm.nih.gov/pubmed/9495865

  • Itzhak, Y., Martin, J. L., & Ali, S. F. (2002). Methamphetamine-induced dopaminergic neurotoxicity in mice: Long-lasting sensitization to the locomotor stimulation and desensitization to the rewarding effects of methamphetamine. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 26(6), 1177–1183. http://www.ncbi.nlm.nih.gov/pubmed/12452543.

  • Jayanthi, S., Ladenheim, B., & Cadet, J. L. (1998). Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Annals of the New York Academy of Sciences, 844, 92–102. http://www.ncbi.nlm.nih.gov/pubmed/9668667.

  • Jayanthi, S., McCoy, M. T., Beauvais, G., Ladenheim, B., Gilmore, K., Wood, W., Becker, K., & Cadet, J. L. (2009). Methamphetamine induces dopamine D1 receptor-dependent endoplasmicreticulum stress-related molecular events in the rat striatum. PloS One, 4(6), e6092. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2699544&tool=pmcentrez&rendertype=abstract.

  • Jayanthi, S., Xiaolin Deng, Ladenheim, B., McCoy, M. T., Cluster, A., Ning-Sheng Cai, & Cadet, J. L. (2005). Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 868–873. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=545515&tool=pmcentrez&rendertype=abstract.

  • Jeng, W., Ramkissoon, A., Parman, T., & Wells, P. G. (2006). Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology, 20(6), 638–650. http://www.ncbi.nlm.nih.gov/pubmed/16581972.

  • Johnson, J. A., Johnson, D. A., Kraft, A. D., Calkins, M. J., Jakel, R. J., Vargas, M. R., & Pei-Chun Chen. (2008). The Nrf2-ARE pathway: An indicator and modulator of oxidative stress in neurodegeneration. Annals of the New York Academy of Sciences, 1147, 61–69. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2605641&tool=pmcentrez&rendertype=abstract.

  • Krasnova, I.N., & Cadet, J. L. (2009). Methamphetamine toxicity and messengers of death. Brain Research Reviews, 60(2), 379–407. http://dx.doi.org/10.1016/j.brainresrev.2009.03.002.

  • Larsen, K. E., Fon, E. A., Hastings, T. G., Edwards, R. H., & Sulzer, D. (2002). Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(20), 8951–8960. http://www.ncbi.nlm.nih.gov/pubmed/12388602

  • LaVoie, M. J., & Hastings, T. G. (1999). Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: Evidence against a role for extracellular dopamine. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19(4), 1484–1491. http://www.ncbi.nlm.nih.gov/pubmed/9952424.

  • Li, Yan-hong, Hui-jun Wang, & Dong-fang Qiao. (2008). Effect of methamphetamine on the microglial cells and activity of nitric oxide synthases in rat striatum. Nan fang yi ke da xue xue bao = Journal of Southern Medical University, 28(10), 1789–1791. http://www.ncbi.nlm.nih.gov/pubmed/18971173.

  • Lo, Shih-Ching, Xuchu Li, Henzl, M. T., Beamer, L. J., & Hannink, M. (2006). Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. The EMBO Journal, 25(15), 3605–3617. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1538563&tool=pmcentrez&rendertype=abstract.

  • Matsuzaki, H., Namikawa, K., Kiyama, H., Mori, N., & Sato, K. (2004). Brain-derived neurotrophic factor rescues neuronal death induced by methamphetamine. Biological Psychiatry, 55(1), 52–60. http://www.ncbi.nlm.nih.gov/pubmed/14706425.

  • McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., & Ricaurte, G. A. (1998). Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: Evidence from positron emission tomography studies with [11C]WIN-35, 428. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(20), 8417–8422. http://www.ncbi.nlm.nih.gov/pubmed/9763484

  • Medina, L., Figueredo-Cardenas, G., & Reiner, A. (1996). Differential abundance of superoxide dismutase in interneurons versus projection neurons and in matrix versus striosome neurons in monkey striatum. Brain Research, 708(1–2), 59–70. http://www.ncbi.nlm.nih.gov/pubmed/8720860

  • Melega, W. P., Lacan, G., Desalles, A. A., & Phelps, M. E. (2000). Long-term methamphetamine-induced decreases of [(11)C]WIN 35,428 binding in striatum are reduced by GDNF: PET studies in the vervet monkey. Synapse (New York, N.Y.), 35(4), 243–249. http://www.ncbi.nlm.nih.gov/pubmed/10657033.

  • Miller, D. B., & O’Callaghan, J. P. (2003). Elevated environmental temperature and methamphetamine neurotoxicity. Environmental Research, 92(1), 48–53. http://www.ncbi.nlm.nih.gov/pubmed/12706754.

  • Nash, J. F., & Yamamoto, B. K. (1992). Methamphetamine neurotoxicity and striatal glutamate release: Comparison to 3,4-methylenedioxymethamphetamine. Brain Research, 581(2), 237–243. http://www.ncbi.nlm.nih.gov/pubmed/1356579.

  • O’Callaghan, J. P., & Miller, D. B. (1994). Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. The Journal of Pharmacology and Experimental Therapeutics, 270(2), 741–751. http://www.ncbi.nlm.nih.gov/pubmed/8071867.

  • Ortiz, O., Delgado-García, J. M., Espadas, I., Bahí, A., Trullas, R., Dreyer, J. L., Gruart, A., & Moratalla, R. (2010). Associative learning and CA3-CA1 synaptic plasticity are impaired in D1R null, Drd1a−/− mice and in hippocampal siRNA silenced Drd1a mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(37), 12288–12300. http://www.ncbi.nlm.nih.gov/pubmed/20844125.

  • Rangasamy, T., Chung Y. Cho, Thimmulappa, R. K., Lijie Zhen, Sorachai S. Srisuma, Kensler, T. W., Masayuki Yamamoto, Petrache, I., Tuder, R. M., & Biswal, S. (2004). Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. The Journal of Clinical Investigation, 114(9), 1248–1259. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=524225&tool=pmcentrez&rendertype=abstract.

  • Sattler, R., & Tymianski, M. (2000). Molecular mechanisms of calcium-dependent excitotoxicity. Journal of Molecular Medicine (Berlin, Germany), 78(1), 3–13. http://www.ncbi.nlm.nih.gov/pubmed/10759025

  • Sonsalla, P. K., Gibb, J. W., & Hanson, G. R. (1986). Roles of D1 and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems. The Journal of Pharmacology and Experimental Therapeutics, 238(3), 932–937. http://www.ncbi.nlm.nih.gov/pubmed/2943891.

  • Sonsalla, P. K., Nicklas, W. J., & Heikkila, R. E. (1989). Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science (New York, N.Y.), 243(4889), 398–400. http://www.ncbi.nlm.nih.gov/pubmed/2563176.

  • Sriram, K., Miller, D. B., & O’Callaghan, J. P. (2006). Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: Role of tumor necrosis factor-alpha. Journal of Neurochemistry, 96(3), 706–718. http://www.ncbi.nlm.nih.gov/pubmed/16405514.

  • Sulzer, D., Sonders, M. S., Poulsen, N. W., & Galli, A. (2005). Mechanisms of neurotransmitter release by amphetamines: A review. Progress in Neurobiology, 75(6), 406–33. http://www.ncbi.nlm.nih.gov/pubmed/15955613.

  • Thomas, D. M., Francescutti-Verbeem, D. M., & Kuhn, D. M. (2008). The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. Journal of Neurochemistry, 105(3), 605–616. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2668123&tool=pmcentrez&rendertype=abstract.

  • UNODC. (2012). World drug report 2012. United Nations publication, Sales No. E.12.XI.1.

    Google Scholar 

  • Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Franceschi, D., Sedler, M., Gatley, S. J., Miller, E., Hitzemann, R., Ding, Y. S., & Logan, J. (2001a). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(23), 9414–9418. http://www.ncbi.nlm.nih.gov/pubmed/11717374

  • Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y. S., Logan, J., Wong, C., & Miller, E. N. (2001b). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. The American Journal of Psychiatry, 158(3), 377–382. http://www.ncbi.nlm.nih.gov/pubmed/11229977.

  • Wagner, G. C., Carelli, R. M., & Jarvis, M. F. (1986). Ascorbic acid reduces the dopamine depletion induced by methamphetamine and the 1-methyl-4-phenyl pyridinium ion. Neuropharmacology, 25(5), 559–561. http://www.ncbi.nlm.nih.gov/pubmed/3488515.

  • White, N. M., & Hiroi, N. (1998). Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6486–6491. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=27819&tool=pmcentrez&rendertype=abstract

  • Xie, T., McCann, U. D., Kim, S., Yuan, J., & Ricaurte, G. A. (2000). Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: Implications for methamphetamine-induced dopaminergic neurotoxicity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(20), 7838–7845. http://www.ncbi.nlm.nih.gov/pubmed/11027249

  • Yamamoto, B. K., & Zhu, W. (1998). The effects of methamphetamine on the production of free radicals and oxidative stress. The Journal of Pharmacology and Experimental Therapeutics, 287(1), 107–114. http://www.ncbi.nlm.nih.gov/pubmed/9765328.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Moratalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Moratalla, R., Ares-Santos, S., Granado, N. (2014). Neurotoxicity of Methamphetamine. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_123

Download citation

Publish with us

Policies and ethics