Skip to main content

Solid Oxide Fuel Cells, Marketing Issues

  • Chapter
  • First Online:
Fuel Cells

Abstract

Clean and sufficient energy is an important precondition for the continued growth in global wealth. Solutions must be found to utilize the remaining fossil fuels more efficiently and also to ensure that new environmentally friendly fuels can secure power production in the post-fossil fuel era. This is the essence of the global energy challenge.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APU:

Auxiliary power unit – device providing power in addition to main power train.

DG:

Distributed generation. Combined heat and power plant with typical capacities from 50 kW to several MW.

micro-CHP:

Micro-combined heat and power. Capacities up to say 10-kW.

SOEC:

Solid oxide electrolyzer cell.

SOFC:

Solid oxide fuel cell.

Bibliography

  1. World energy outlook 2010. IEA, Paris, 2010

    Google Scholar 

  2. Singhal SC (1993) Advances in tubular solid oxide fuel cell technology. In: Dokiya M, Yamamoto Y, Takagawa H, Singhal SC (eds) ECS transactions, PV95-1. Electrochemical Society, Pennington, pp 195–207

    Google Scholar 

  3. Kendall K, Minh NQ, Singhal SC (2003) Cell and stack designs. In: Singhal SC, Kendall K (eds) High temperature solid oxide fuel cells - fundamentals, design and applications. Elsevier, Oxford, UK

    Google Scholar 

  4. Orsello G, Casanova A, Hoffman J (2008) Latest info about operation of the Siemens SOFC Generators CHP100 and SFC5 in a factory. In: Proceedings of the 8th European fuel cell forum, Lucerne, pp B0204

    Google Scholar 

  5. Gariglio M, De Benedictis F, Santarelli M, Calm M, Orsello G (2009) Experimental activity on two tubular solid oxide fuel cell cogeneration plants in a real industrial environment. Int J Hydrogen Energy 34:4661–4668

    Article  Google Scholar 

  6. Hassmann K (2001) SOFC power plants, the Siemens-Westinghouse approach. Fuel Cells 1:78–84

    Article  Google Scholar 

  7. Borglum B, Fan JJ, Neary E (2003) Following the critical path to commercialization: an update on global thermoelectrics technology and product development. In: Proceedings of the 8th ECS SOFC Symposium, SOFC VIII, Paris. The Electrochemical Society, Pennington, pp 60–69

    Google Scholar 

  8. Borglum B, Tang E, Pastula M (2009) The status of SOFC development at versa power systems. In: ECS Transactions, vol 25, pp 65–70

    Article  Google Scholar 

  9. Seeking Alpha: eBay installing bloom energy fuel cells, 9-10-2009. http://seekingalpha.com/article/167936-ebay-installing-bloom-energy-fuel-cells. Accessed 12 Feb 2011

  10. JCN Newswires MHI achieves 3,000 hour operation, unprecedented in Japan for SOFC/MGT combined-cycle power generation systems, 2 Oct 2009

    Google Scholar 

  11. Föger K, Love JG (2004) Fifteen years of SOFC development in Australia. Solid State Ionics 174:119–126

    Article  Google Scholar 

  12. Love J, Amarasinghe S, Selvey D, Zheng X, Christiansen L (2009) Development of SOFC stacks at ceramic fuel cells limited. In: ECS Transactions, vol 25, pp 115–124

    Article  Google Scholar 

  13. Payne R, Love J, Kah M (2009) Generating electricity at 60% electrical efficiency from 1–2 kWe SOFC products. In: ECS Transactions, vol 25, pp 231–239

    Article  Google Scholar 

  14. Agnew GD, Collins RD, Jorger M, Pyke SH, Travis RP (2007) The components of a Rolls-Royce 1 MW SOFC system. In: ECS Transactions, vol 7, pp 105–111

    Article  Google Scholar 

  15. Magistri L, Bozzolo M, Tarnowski O, Agnew G, Massardo AF (2007) Design and off-design analysis of a MW hybrid system based on Rolls-Royce integrated planar solid oxide fuel cells. J Eng Gas Turbines Power 129:792–797

    Article  Google Scholar 

  16. Bance P, Brandon NP, Girvan B, Holbeche P, O’Dea S, Steele BCH (2004) Spinning-out a fuel cell company from a UK University – 2 years of progress at Ceres power. J Power Sources 131:86–90, 5-14-2004

    Article  Google Scholar 

  17. Brandon NP, Blake A, Corcoran D, Cumming D, Duckett A, El-Koury K, Haigh D, Kidd C, Leah R, Lewis G, Matthews C, Maynard N, Oishi N, McColm T, Trezona R, Selcuk A, Schmidt M, Verdugo L (2004) Development of metal supported solid oxide fuel cells for operation at 500–600°C. J Fuel Cell Sci Technol 1:61–65

    Article  Google Scholar 

  18. Christiansen N, Hansen JB, Holm-Larsen H, Jørgensen MJ, Wandel M, Hendriksen PV, Hagen A, Ramousse S (2009) Status of development and manufacture of solid oxide fuel cells at Topsoe Fuel Cell A/S and Risø DTU. In: ECS Transactions, vol 25, pp 133–142

    Article  Google Scholar 

  19. Fontell E (2008) Fuel cell fed with landfill biogas provides power. Industrial Bioprocess 30:10

    Google Scholar 

  20. Fontell E, Phan T, Kivisaari T, Kerañnen K (2006) Solid oxide fuel cell system and the economical feasibility. J Fuel Cell Sci Technol 3:242–253

    Article  Google Scholar 

  21. Fontell E, Jussila M, Hansen JB, Pålsson J, Kivisaari T, Nielsen JU (2005) Wärtsilä-Haldor Topsøe SOFC test system. In: Proceedings of the Electrochemical Society, PV 2005-07, pp 123–132

    Google Scholar 

  22. METHAPU. 12-1-2012. http://www.methapu.eu/Oskari2.aspx?cmd=15. Accessed 10 Jan 2011

  23. Steinberger-Wilckens R, Bucheli O, De Haart LGJ, Hagen A, Kiviaho J, Larsen J, Pyke S, Rietveld B, Sfeir J, Tietz F, Zahid M (2009) Real-SOFC – a joint European effort to improve SOFC durability. In: ECS Transactions, vol 25, pp 43–56

    Article  Google Scholar 

  24. Vora S (2010) SECA program accomplishment and future challenges. In: 11th annual SECA workshop, Pittsburg, PA

    Google Scholar 

  25. Ghezedl-Ayagh H, Borglum B (2010) Coal based SECA program – fuel cell energy. In: 11th annual SECA workshop, Pittsburg, PA

    Google Scholar 

  26. Hansen JB, Pålsson J, Nielsen JU, Fontell E, Kivisaari T, Jumppanen P, Hendriksen PV (2003) Design aspects of a 250 kW NG fuelled SOFC system – strategies to counteract stack performance degradation. In: Abstract fuel cell seminar, Miami Beach, FL, 3 Nov 2003, pp 790–793

    Google Scholar 

  27. Åström K, Fontell E, Virtanen S (2007) Reliability analysis and initial requirements for FC systems and stacks. J Power Sources 171:46–54

    Article  Google Scholar 

  28. Nakajo A, Wuillemin Z, Vanherle J, Favrat D (2009) Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: probability of failure of the cells. J Power Sources 193:203–215

    Article  Google Scholar 

  29. Nakajo A, Wuillemin Z, Vanherle J, Favrat D (2009) Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: loss of gas-tightness, electrical contact and thermal buckling. J Power Sources 193:216–226

    Article  Google Scholar 

  30. Anandakumar G, Li N, Verma A, Singh P, Kim JH (2010) Thermal stress and probability of failure analyses of functionally graded solid oxide fuel cells. J Power Sources 195:6659–6670

    Article  Google Scholar 

  31. Anandakumar G, Kim JH (2010) A thermomechanical fracture modeling and simulation for functionally graded solids using a residual-strain formulation. Int J Fracture 164:31–55

    Article  Google Scholar 

  32. Zhang Y, Xia C (2010) A durability model for solid oxide fuel cell electrodes in thermal cycle processes. J Power Sources 195:6611–6618

    Article  Google Scholar 

  33. Tucker MC (2010) Progress in metal-supported solid oxide fuel cells: a review. J Power Sources 195:4570–4582

    Article  Google Scholar 

  34. Thijssen J (2007) The impact of scale-up and production volume on SOFC manufacturing cost, 4 Feb 2007. http://www.netl.doe.gov/technologies/coalpower/fuelcells/publications/JT%20Manufacturing%20Study%20Report%20070522.pdf. Accessed 10 Jan 2011

  35. Thijssen J (2010) Market impact of rare element use in solid oxide fuel cells, 18 Oct 2010. http://www.netl.doe.gov/technologies/coalpower/fuelcells/publications/Rare%20Earth%20Markets%20and%20Solid%20Oxide%20Fuel%20Cells%20101018.pdf. Accessed 10 Jan 2011

  36. Mattsson N, Wene GO (1997) Assessing new energy technologies using an energy system model with endogenized experience curves. Int J Energy Res 21:385–393

    Article  Google Scholar 

  37. Neij L (1997) Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology. Energy Policy 25:1099–1107

    Article  Google Scholar 

  38. Norberg-Bohm V (2000) Creating incentives for environmentally enhancing technological change: lessons from 30 years of U.S. Energy Technology Policy. Technol Forecast Soc Change 65:125–148

    Article  Google Scholar 

  39. Rivers N, Jaccard M (2006) Choice of environmental policy in the presence of learning by doing. Energ Econ 28:223–242

    Article  Google Scholar 

  40. Woerlen C (2004) Experience curves for energy technologies. In: Cleveland CJ (ed) Encyclopedia of energy. Elsevier, New York, pp 641–649

    Chapter  Google Scholar 

  41. Schoots K, Kramer GJ, van der Zwaan BCC (2010) Technology learning for fuel cells: an assessment of past and potential cost reductions. Energ Policy 38:2887–2897

    Article  Google Scholar 

  42. Schwoon M (2008) Learning by doing, learning spillovers and the diffusion of fuel cell vehicles. Simulat Model Pract Theor 16:1463–1476

    Article  Google Scholar 

  43. Staffell I, Green RJ (2009) Estimating future prices for stationary fuel cells with empirically derived experience curves. Int J Hydrogen Energy 34:5617–5628

    Article  Google Scholar 

  44. Lund PD (2010) Importance of integrated strategies and innovations for commercial breakthrough of fuel cells. Int J Hydrogen Energy 35:2602–2605

    Article  Google Scholar 

  45. Jamasb T (2007) Technical change theory and learning curves: patterns of progress in electricity generation technologies. Energy J 28:51–71

    Google Scholar 

  46. Fontell E, Kivisaari T, Christiansen N, Hansen JB, Pålsson J (2004) Conceptual study of a 250 kW planar SOFC system for CHP application. J Power Sources 131:49–56

    Article  Google Scholar 

  47. Nehter P, Hansen JB, Larsen PK (2011) J Power Sources 196(17):7347–7354

    Google Scholar 

  48. Baratto F, Diwekar UM (2005) Life cycle assessment of fuel cell-based APUs. J Power Sources 139:188–196

    Article  Google Scholar 

  49. Baratto F, Diwekar UM, Manca D (2005) Impacts assessment and trade-offs of fuel cell-based auxiliary power units Part I: system performance and cost modeling. J Power Sources 139:205–213

    Article  Google Scholar 

  50. Baratto F, Diwekar UM, Manca D (2005) Impacts assessment and tradeoffs of fuel cell based auxiliary power units Part II. Environmental and health impacts, LCA, and multi-objective optimization. J Power Sources 139:214–222

    Article  Google Scholar 

  51. Hansen JB (2005) Oxygenates as SOFC fuels for APU applications. In: 15th international symposia on alcohol fuels (ISAF XV), San Diego, CA, Sep 2005, 2006

    Google Scholar 

  52. Rechberger J, Schauperl R, Hansen JB, Larsen PK (2009) Development of a methanol SOFC APU demonstration system. In: ECS Transactions, vol 25, pp 1085–1092

    Google Scholar 

  53. Alanne K, Saari A, Ugursal VI, Good J (2006) The financial viability of an SOFC cogeneration system in single-family dwellings. J Power Sources 158:403–416

    Article  Google Scholar 

  54. Alanne K, Salo A, Saari A, Gustafsson SI (2007) Multi-criteria evaluation of residential energy supply systems. Energ Buildings 39:1218–1226

    Article  Google Scholar 

  55. Alanne K, Saari A (2008) Estimating the environmental burdens of residential energy supply systems through material input and emission factors. Build Environ 43:1734–1748

    Article  Google Scholar 

  56. Bompard E, Napoli R, Wan B, Orsello G (2008) Economics evaluation of a 5 kW SOFC power system for residential use. Int J Hydrogen Energy 33:3243–3247

    Article  Google Scholar 

  57. Braun RJ, Klein SA, Reindl DT (2006) Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications. J Power Sources 158:1290–1305

    Article  Google Scholar 

  58. Braun RJ (2010) Techno-economic optimal design of solid oxide fuel cell systems for micro-combined heat and power applications in the U.S. J Fuel Cell Sci Technol 7:0310181–03101815

    Article  Google Scholar 

  59. Hawkes AD, Aguiar P, Hernandez-Aramburo CA, Leach MA, Brandon NP, Green TC, Adjiman CS (2006) Techno-economic modelling of a solid oxide fuel cell stack for micro combined heat and power. J Power Sources 156:321–333

    Article  Google Scholar 

  60. Hawkes AD, Leach MA (2007) Cost-effective operating strategy for residential micro-combined heat and power. Energy 32:711–723

    Article  Google Scholar 

  61. Hawkes AD, Aguiar P, Croxford B, Leach MA, Adjiman CS, Brandon NP (2007) Solid oxide fuel cell micro combined heat and power system operating strategy: Options for provision of residential space and water heating. J Power Sources 164:260–271

    Article  Google Scholar 

  62. Palazzi F, Autissier N, François MAM, Favrat D (2007) A methodology for thermo-economic modeling and optimization of solid oxide fuel cell systems. Appl Thermal Eng 27:2703–2712

    Article  Google Scholar 

  63. Staffell I, Green R, Kendall K (2008) Cost targets for domestic fuel cell CHP. J Power Sources 181:339–349

    Article  Google Scholar 

  64. Gray D (2010) Current and future technologies for gasification-based power generation. Vol 2 – revision 1", 11 Nov 2010. http://www.netl.doe.gov/energy-analyses/pubs/AdvancedPowerSystemsPathwayVol2.pdf. Accessed 10 Jan 2011

  65. Steinberger-Wilckens R (2009) European SOFC R&D – Status and trends. In: ECS Transactions, vol 25, 2009, pp 3–10

    Google Scholar 

  66. Hellman HL, van den Hoed R (2007) Characterising fuel cell technology: challenges of the commercialisation process. Int J Hydrogen Energy 32:305–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bøgild Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hansen, J.B., Christiansen, N. (2013). Solid Oxide Fuel Cells, Marketing Issues. In: Kreuer, KD. (eds) Fuel Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5785-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5785-5_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5784-8

  • Online ISBN: 978-1-4614-5785-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics