Skip to main content

The Language

  • Chapter
  • First Online:
  • 1363 Accesses

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

Abstract

One of the major concerns in bacterial communication is to understand and to decode the language spoken by microorganisms. The intraspecies languages spoken by Gram-negative and -positive bacteria, which are used for interspecies communication (universal chemical lexicon), and the relatively new bacterial signal that seems to be involved in cross-talk between bacteria and the human host (e.g., interkingdom communication) are reviewed in this chapter. Several examples are given for species that are predominantly relevant in foods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  CAS  Google Scholar 

  2. Duan K, Sibley CD, Davidson CJ, Surette MG (2009) Chemical interactions between organisms in microbial communities. In: Collin M, Schuch R (eds) Bacterial sensing and signaling, vol 16. Karger AG, Berlin, pp 1–17

    Chapter  Google Scholar 

  3. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Gen 35:439–468

    Article  CAS  Google Scholar 

  4. Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the vibrio fischeri luminescence system. J Bacteriol 163:1210–1214

    CAS  Google Scholar 

  5. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  6. Fast W, Tipton PA (2012) The enzymes of bacterial census and censorship. Trends Biochem Sci 37:7–14

    Article  CAS  Google Scholar 

  7. Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chem Bio Chem 10:205–216

    CAS  Google Scholar 

  8. Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill ME (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9:685–694

    Article  CAS  Google Scholar 

  9. Gould TA, Schweizer HP, Churchill ME (2004) Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol Microbiol 53:1135–1146

    Article  CAS  Google Scholar 

  10. Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H, Igarashi J, Suga H, Moon JS, Hwang I, Rhee S (2011) Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc Natl Acad Sci USA 96:4360–4365

    Google Scholar 

  11. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP (1999) Acyl homoserine-lactone quorum sensing signal generation. Proc Natl Acad Sci USA 96:4360–4365

    Article  CAS  Google Scholar 

  12. Brader G, Sjöblom S, Hyytiäinen H, Sims-Huopaniemi K, Palva ET (2005) Altering substrate chain length specificity of an acylhomoserine lactone synthase in bacterial communication. J Biol Chem 280:10403–10409

    Article  CAS  Google Scholar 

  13. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum sensing signals. Nature 454:595–600

    Article  CAS  Google Scholar 

  14. Arevalo-Ferro C, Hentzer M, Reil G, Görg A, Kjelleberg S, Givskov M, Riedel K, Eberl L (2003) Identification of quorum sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ Microbiol 5:1350–1369

    Article  CAS  Google Scholar 

  15. de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849

    Article  Google Scholar 

  16. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128

    Article  CAS  Google Scholar 

  17. Mattmann ME, Blackwel HE (2010) Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J Org Chem 75:6737–6746

    Article  CAS  Google Scholar 

  18. Schuster M, Greenberg EP (2008) LuxR-type proteins in Pseudomonas aeruginosa quorum sensing. Distinct mechanism with global implications. In: Winans SC, Bassler BL (eds) Chemical communication among bacteria. ASM Press, Washington, DC, p 161

    Google Scholar 

  19. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  CAS  Google Scholar 

  20. Chugani SA, Whiteley M, Lee KM, D’Argenio DA, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:2752–2757

    Article  CAS  Google Scholar 

  21. Lee J-H, Lequette Y, Greenberg EP (2006) Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum sensing transcription factor. Mol Microbiol 59:602–609

    Article  CAS  Google Scholar 

  22. Minagawa S, Inami H, Kato T, Sawada S, Yasuki T, Miyairi S, Horikawa M, Okuda J, Gotoh N (2012) RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol 12:70–82

    Article  Google Scholar 

  23. Pirhonen M, Flego D, Heikinheimo R, Palva TE (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476

    CAS  Google Scholar 

  24. Chatterjee A, Cui Y, Chakrabarty P, Chatterjee AK (2010) Regulation of motility in Erwinia carotovora subsp. carotovora: quorum sensing signal controls FlhDC, the global regulator of flagellar and exoprotein genes, by modulating the production of RsmA, an RNA-binding protein. Mol Plant Microbe Interact 23:1316–1323

    Article  CAS  Google Scholar 

  25. McGowan S, Sebaihia M, Jones S, Yu B, Bainton NJ, Chan PF, Bycroft BW, Stewart GSAB, Salmond GPC, Williams P (1995) Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141:541–550

    Article  CAS  Google Scholar 

  26. Medina-Martınez MS, Uyttendaele M, Meireman S, Debevere J (2007) Relevance of N-acyl-L-homoserine lactone production by Yersinia enterocolitica in fresh foods. J Appl Microbiol 102:1150–1158

    Google Scholar 

  27. Jacobi CA, Bach A, Eberl L, Steidle A, Heesemann J (2003) Detection of N-(3-oxohexanoyl)-L-homoserine lactone in mice infected with Yersinia enterocolitica serotype O8. Infect Immun 71:6624–6626

    Article  CAS  Google Scholar 

  28. Ahmer BMM (2004) Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol 52:933–945

    Article  CAS  Google Scholar 

  29. Michiels J, Dirix G, Vanderleyden J, Xi C (2001) Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria. Trends Microbiol 9:164–168

    Article  CAS  Google Scholar 

  30. Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Raistonia solanacearum. Mol Microbiol 26:251–259

    Article  CAS  Google Scholar 

  31. Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GPC, Stewart GSAB, Bycroft BW, Kjelleberg S, Williams P (1999) Quorum sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol 33:1254–1266

    Article  CAS  Google Scholar 

  32. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans ADL, De Vos WM (2001) Gelatinase biosynthesis–activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol 41:145–154

    Article  CAS  Google Scholar 

  33. Hellingwerf KJ, Crielaard WC, Teixeira J, de Mattos M, Hoff WD, Kort R, Verhamme DT, Avignone-Rossa C (1998) Current topics in signal transduction in bacteria. Ant van Leeuw 74:211–227

    Article  CAS  Google Scholar 

  34. Quadri LEN, Kleerebezem M, Kuipers OP, De Vos WM, Roy KL, Vederas JC, Stiles ME (1997) Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. J Bacteriol 179:6163–6171

    CAS  Google Scholar 

  35. Brurberg MB, Nes IF, Eijsink VGH (1997) Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 26:347–360

    Article  CAS  Google Scholar 

  36. O’Keeffe T, Hill C, Ross RP (1999) Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 65:1506–1515

    Google Scholar 

  37. Clewell DB (1993) Bacterial sex pheromone-induced plasmid transfer. Cell 3:9–12

    Article  Google Scholar 

  38. Morrison DA (1997) Streptococcal competence for genetic transformation: regulation by peptide pheromones. Microb Drug Resist Mech Epidemiol Dis 3:27–37

    CAS  Google Scholar 

  39. Magnuson R, Solomon J, Grossman AD (1994) Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77:207–216

    Article  CAS  Google Scholar 

  40. Rudner DZ, LeDeaux JR, Ireton K, Grossman AD (1991) The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J Bacteriol 173:1388–1398

    CAS  Google Scholar 

  41. Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphilococcus aureus. Mol Gen Genet 248:446–458

    Article  CAS  Google Scholar 

  42. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170

    Article  CAS  Google Scholar 

  43. Geisinger E, Novik RP (2008) Signal integration and virulence gene regulation in Staphylococcus aureus. In: Winans SC, Bassler BL (eds) Chemical communication among bacteria. ASM Press, Washington, DC, p 161

    Google Scholar 

  44. Cheung AL, Coomey JM, Butler CA, Projan SJ, Fischetti VA (1992) Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc Natl Acad Sci USA 1992(89):6462–6466

    Article  Google Scholar 

  45. Tegmark K, Karlsson A, Arvidson S (2000) Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol 37:398–409

    Article  CAS  Google Scholar 

  46. McNamara PJ, Milligan-Monroe KC, Khalili S, Proctor RA (2000) Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J Bacteriol 182:3197–3203

    Article  CAS  Google Scholar 

  47. Ji G, Beavis RC, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276:2027–2030

    Article  CAS  Google Scholar 

  48. Lina G, Jarraud S, Ji G, Greenland T, Pedraza A, Etienne J, Novick RP, Vandenesch F (1998) Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol Microbiol 28:655–662

    Article  CAS  Google Scholar 

  49. Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infection. J Clin Invest 112:1620–1625

    CAS  Google Scholar 

  50. Qin X, Singh KV, Welnstock GM, Murray BE (2001) Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183:3372–3382

    Article  CAS  Google Scholar 

  51. Wolfgang H, Shepard BD, Gilmore MS (2002) Two-component regulator of Enterococcus faecalis cytolysin responds to quorum sensing autoinduction. Nature 415:84–87

    Article  Google Scholar 

  52. Sturme MHJ, Nakayama J, Molenaar D, Murakami Y, Kunugi R, Fujii T, Vaughan EE, Kleerebezem M, de Vos W (2005) An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol 187:5224–5235

    Article  CAS  Google Scholar 

  53. Comella N, Grossman A (2005) Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum sensing transcription factor ComA in Bacillus subtilis. Mol Microbiol 57:1159–1174

    Article  CAS  Google Scholar 

  54. Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomices coelicolor A3(2). Mol Microbiol 41:1015–1028

    Article  CAS  Google Scholar 

  55. Bassler BL, Wright M, Silverman MR (1994) Multiple signalling systems controlling gene expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286

    Article  CAS  Google Scholar 

  56. Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A (2007) Cell-cell communication in food related bacteria. Int J Food Microbiol 120:34–45

    Article  CAS  Google Scholar 

  57. Schauder S, Penna L, Ritton A, Manin C, Parker F, Renauld-Mongénie G (2005) Proteomics analysis by two-dimensional differential gel electrophoresis reveals the lack of a broad response of Neisseria meningitidis to in vitro-produced AI-2. J Bacteriol 187:392–395

    Article  CAS  Google Scholar 

  58. Chen X, Schauder S, Potler N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum sensing signal containing boron. Nature 115:545–549

    Article  Google Scholar 

  59. De Keersmaecker SCJ, Sonck K, Vanderleyden J (2006) Let LuxS speak up in AI-2 signaling. Trends Microbiol 14:114–119

    Article  Google Scholar 

  60. Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can’t talk now – gone to lunch! Curr Opin Microbiol 5:216–222

    Article  CAS  Google Scholar 

  61. Wang L, Li J, March JC, Valdes JJ, Bentley WE (2005) luxS-Dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol 187:8350–8360

    Article  CAS  Google Scholar 

  62. Ndagijimana M, Vallicelli M, Cocconcelli PS, Cappa F, Patrignani F, Lanciotti R, Guerzoni ME (2006) Two 2[5 H]-furanones as possile signalling molecules in Lactobacillus helveticus. Appl Environ Microbiol 72:6053–6061

    Article  CAS  Google Scholar 

  63. Bassler BL, Miller MB (2006) Quorum sensing. http://141.150.157.117:8080/prokPUB/chaphtm/320/COMPLETE.htm

  64. Lerat E, Moran NA (2004) The evolutionary history of quorum sensing in bacteria. Mol Microbiol Evol 21:903–913

    Article  CAS  Google Scholar 

  65. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197

    Article  CAS  Google Scholar 

  66. Rezzonico F, Duffy B (2008) Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol 8:154–173

    Article  Google Scholar 

  67. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR (2005) Making ‘sense’ of metabolism: autoinducer-2, LuxS, and pathogenic bacteria. Nat Rev Microbiol 3:383–396

    Article  CAS  Google Scholar 

  68. Wilson CM, Aggio RBM, O’Toole PW, Villas-Boas S, Tannock GW (2012) Transcriptional and metabolomic consequences of luxS inactivation reveal a metabolic rather than quorum sensing role for LuxS in Lactobacillus reuteri 100–23. J Bacteriol 194:1743–1746

    Article  Google Scholar 

  69. Sun J, Daniel R, Wagner-Döbler I, An-Ping Z (2004) Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4:36–47

    Article  Google Scholar 

  70. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteriahost communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956

    Article  CAS  Google Scholar 

  71. Winans SC, Bassler BL (2002) Mob Psychology. J Bacteriol 184:873–883

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Marco Gobbetti and Rafaella Di Cagno

About this chapter

Cite this chapter

Gobbetti, M., Di Cagno, R. (2012). The Language. In: Bacterial Communication in Foods. SpringerBriefs in Food, Health, and Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5656-8_1

Download citation

Publish with us

Policies and ethics