Skip to main content

Lens Differentiation from Embryonic Stem (ES) and Induced Pluripotent Stem (iPS) Cells

  • Chapter
  • First Online:
Stem Cell Biology and Regenerative Medicine in Ophthalmology

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The formation of lens progenitor cells and differentiated lens tissue in cell culture conditions presents a number of experimental challenges, even though lens lineage formation and lens fiber cell differentiation are among the best characterized model systems at both genetic and molecular levels. Lens differentiation from ES cells in vitro appears to be a feasible goal. This chapter describes the significance of using ES and iPS cells for better understanding of embryonic lens development and formation of congenital cataracts. A discussion of how iPS cells can help studies of age-related cataract is also included. The chapter summarizes the current data on lentoid body formation from human and primate ES cells, and the molecular basis of directed differentiation of human ES cells into lens progenitor cells and lentoid bodies. Finally, current gaps in lens research and future directions to address these problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker CV, Bronner-Fraser M (2001) Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232(1):1–61

    Article  PubMed  CAS  Google Scholar 

  2. Balemans W, Van Hul W (2002) Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 250(2):231–250

    Article  PubMed  CAS  Google Scholar 

  3. Bassnett S (2009) On the mechanism of organelle degradation in the vertebrate lens. Exp Eye Res 88:133–139

    Article  PubMed  CAS  Google Scholar 

  4. Bassnett S, Shi Y, Vrensen GF (2011) Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci 366(1568):1250–1264

    Article  PubMed  Google Scholar 

  5. Ben-Dor I, Itsykson P, Goldenberg D, Galun E, Reubinoff BE (2006) Lentiviral vector harboring a dual-gene system allow high and homegenous expression in selected polyclonal human embryonic stem cells. Mol Ther 14:255–267

    Article  PubMed  CAS  Google Scholar 

  6. Benedek GB, Pande J, Thorston GM, Clark JI (1999) Theoretical and experimental basis for the inhibition of cataract. Prog Retin Eye Res 18:391–402

    Article  PubMed  CAS  Google Scholar 

  7. Bidinost C, Matsumoto M, Chung D, Salem N, Zhang K, Stockton DW, Khoury A, Megarbane A, Bejjani BA, Traboulsi EI (2006) Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Invest Ophthalmol Vis Sci 47(4):1274–1280

    Article  PubMed  Google Scholar 

  8. Blakely EA, Bjornstad KA, Chang PY, McNamara MP, Chang E, Aragon G, Lin SP, Lui G, Polansky JR (2000) Growth and differentiation of human lens epithelial cells in vitro on matrix. Invest Ophthalmol Vis Sci 41(12):3898–3907

    PubMed  CAS  Google Scholar 

  9. Boswell BA, Overbeek PA, Musil L (2008) Essential role of BMPs in FGF-induced secondary lens fiber cell differentiation. Dev Biol 324:201–212

    Article  CAS  Google Scholar 

  10. Brémond-Gignac D, Bitoun P, Reis LM, Copin H, Murray JC, Semina EV (2010) Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia. Mol Vis 16:1705–1711

    PubMed  Google Scholar 

  11. Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, Andres L, Jiang H, Zheng G, Qian M, Cui B, Xia Y, Liu J, Hu L, Zhao G, Hayden MR, Kong X (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31(3):276–278

    Article  PubMed  CAS  Google Scholar 

  12. Burlacu A (2006) Can 5-azacytidine convert the adult stem cells into cardiomyocytes? A brief overview. Arch Physiol Biochem 112(4–5):260–264

    Article  PubMed  CAS  Google Scholar 

  13. Cai J, Li W, Su H, Qin D, Yang J, Zhu F, Xu J, He W, Guo X, Labuda K, Peterbauer A, Wolbank S, Zhong M, Li Z, Wu W, So KF, Redl H, Zeng L, Esteban MA, Pei D (2010) Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285(15):11227–11234

    Article  PubMed  CAS  Google Scholar 

  14. Chamberlain CG, McAvoy JW (1989) Induction of lens fibre differentiation by acidic and basic fibroblast growth factor (FGF). Growth Factors 1(2):125–134

    Article  PubMed  CAS  Google Scholar 

  15. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  PubMed  CAS  Google Scholar 

  16. Chow RL, Lang RA (2001) Early eye development in vertebrates. Annu Rev Cell Dev Biol 17(255–296)

    Google Scholar 

  17. Churchill A, Graw J (2011) Clinical and experimental advances in congenital and paediatric cataracts. Philos Trans R Soc Lond B Biol Sci 366(1568):1234–1249

    Article  PubMed  Google Scholar 

  18. Cvekl A, Duncan MK (2007) Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 26(6):555–597

    Article  PubMed  CAS  Google Scholar 

  19. Cvekl A, Mitton KP (2010) Epigenetic regulatory mechanisms in vertebrate eye development and disease. Heredity 105(1):135–151

    Article  PubMed  CAS  Google Scholar 

  20. Cvekl A, Piatigorsky J (1996) Lens development and crystallin gene expression: many roles for Pax-6. Bioessays 18(8):621–630

    Article  PubMed  CAS  Google Scholar 

  21. Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88:151–164

    Article  PubMed  CAS  Google Scholar 

  22. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133(7):2485S–2493S

    PubMed  CAS  Google Scholar 

  23. Donner AL, Lachke SA, Maas RL (2006) Lens induction in vertebrates: variations on a conserved theme of signaling events. Semin Cell Dev Biol 17(6):676–685

    Article  PubMed  CAS  Google Scholar 

  24. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA (2008) Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 34(3):206–222

    Article  PubMed  CAS  Google Scholar 

  25. Faber SC, Dimanlig P, Makarenkova HP, Shirke S, Ko K, Lang RA (2001) Fgf receptor signaling plays a role in lens induction. Development 128(22):4425–4438

    PubMed  CAS  Google Scholar 

  26. Fujimoto M, Oshima K, Shinkawa T, Wang BB, Inouye S, Hayashida N, Takii R, Nakai A (2008) Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses. J Biol Chem 283(44):29961–29970

    Article  PubMed  CAS  Google Scholar 

  27. Furuta Y, Hogan BL (1998) BMP4 is essential for lens induction in the mouse embryo. Genes Dev 12:3764–3775

    Article  PubMed  CAS  Google Scholar 

  28. Galende E, Karakikes I, Edelmann L, Desnick RJ, Kerenyi T, Khoueiry G, Lafferty J, McGinn JT, Brodman M, Fuster V, Hajjar RJ, Polgar K (2010) Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cloning Stem Cells 12:1–10

    Google Scholar 

  29. Garcia CM, Huang J, Madakashira BP, Liu Y, Rajagopal R, Dattilo L, Robinson ML, Beebe DC (2011) The function of FGF signaling in the lens placode. Dev Biol 351(1):176–185

    Article  PubMed  CAS  Google Scholar 

  30. Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15(9):371–377

    Google Scholar 

  31. Gerhart J, Pfautz J, Neely C, Elder J, DuPrey K, Menko AS, Knudsen K, George-Weinstein M (2009) Noggin producing, MyoD-positive cells are crucial for eye development. Dev Biol 336(1):30–41

    Article  PubMed  CAS  Google Scholar 

  32. Gotoh N, Ito M, Yamamoto S, Yoshino I, Song N, Wang Y, Lax I, Schlessinger J, Shibuya M, Lang RA (2004) Tyrosine phosphorylation sites on FRS2alpha responsible for Shp2 recruitment are critical for induction of lens and retina. Proc Natl Acad Sci USA 101(49):17144–17149

    Article  PubMed  CAS  Google Scholar 

  33. Gögel S, Gubernator M, Minger SL (2011) Progress and prospects: stem cells and neurological diseases. Gene Ther 18(1):1–6

    Article  PubMed  CAS  Google Scholar 

  34. Göttlicher M (2004) Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann Hematol 83(Suppl):91–92

    Google Scholar 

  35. Grainger RM (1992) Embryonic lens induction: shedding light on vertebrate tissue determination. Trends Genet 8(10):349–355

    Article  PubMed  CAS  Google Scholar 

  36. Graw J (2009) Genetics of crystallins: cataract and beyond. Exp Eye Res 88(2):173–189

    Article  PubMed  CAS  Google Scholar 

  37. Griep AE (2006) Cell cycle regulation in the developing lens. Semin Cell Dev Biol 17(6):686–697

    Google Scholar 

  38. Gunhaga L (2011) The lens: a classical model of embryonic induction providing new insights into cell determination in early development. Philos Trans R Soc Lond B Biol Sci 366(1568):1193–1203

    Article  PubMed  Google Scholar 

  39. Heiba IM, Elston RC, Klein BE, Klein R (1995) Evidence for a major gene for cortical cataract. Invest Ophthalmol Vis Sci 36:227–235

    PubMed  CAS  Google Scholar 

  40. Hejtmancik JF (2008) Congenital cataracts and their molecular genetics. Semin Cell Dev Biol 19(2):134–149

    Article  PubMed  CAS  Google Scholar 

  41. Hejtmancik JF, Kantorow M (2004) Molecular genetics of age-related cataract. Exp Eye Res 79(1):3–9

    Article  PubMed  CAS  Google Scholar 

  42. Hemmat S, Lieberman DM, Most SP (2010) An introduction to stem cell biology. Facial Plast Surg 26(5):343–349

    Article  PubMed  CAS  Google Scholar 

  43. Hever AM, Williamson KA, van Heyningen V (2006) Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clin Genet 69(6):459–470

    Article  PubMed  CAS  Google Scholar 

  44. Hirano M, Yamamoto A, Yoshimura N, Tokunaga T, Motohashi T, Ishizaki K, Yoshida H, Okazaki K, Yamazaki H, Hayashi S, Kunisada T (2003) Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev Dyn 228:664–671

    Article  PubMed  Google Scholar 

  45. Ibaraki N, Lin LR, Reddy VN (1995) Effects of growth factors on proliferation and differentiation in human lens epithelial cells in early subculture. Invest Ophthalmol Vis Sci 36(11):2304–2312

    PubMed  CAS  Google Scholar 

  46. Ibaraki N, Lin LR, Reddy VN (1996) A study of growth factor receptors in human lens epithelial cells and their relationship to fiber differentiation. Exp Eye Res 63(6):683–692

    Article  PubMed  CAS  Google Scholar 

  47. Iyengar SK, Klein BE, Klein R, Jun G, Schick JH, Millard C, Liptak R, Russo K, Lee KE, Elston RC (2004) Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study. Proc Natl Acad Sci USA 101:14485–14490

    Article  PubMed  CAS  Google Scholar 

  48. Jonasova K, Kozmik Z (2008) Eye evolution: lens and cornea as an upgrade of animal visual system. Semin Cell Dev Biol 19(2):71–81

    Article  PubMed  Google Scholar 

  49. Jones PA (1985) Altering gene expression with 5-azacytidine. Cell 40(3):485–486

    Article  PubMed  CAS  Google Scholar 

  50. Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155

    Article  PubMed  CAS  Google Scholar 

  51. Kidd GL, Reddan JR, Russell P (1994) Differentiation and angiogenic growth factor message in two mammalian lens epithelial cell lines. Differentiation 56(1–2):67–74

    PubMed  CAS  Google Scholar 

  52. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  PubMed  CAS  Google Scholar 

  53. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hübner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Schöler HR (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419

    Article  PubMed  CAS  Google Scholar 

  54. Klein BE, Klein R, Lee KE (2002) Incidence of age-related cataract over a 10-year interval: the Beaver Dam Eye Study. Ophthalmology 109:2052–2057

    Article  PubMed  Google Scholar 

  55. Klein BE, Klein R, Lee KE, Moore EL, Danforth L (2001) Risk of incident age-related eye diseases in people with an affected sibling: the Beaver Dam Eye Study. Am J Epidemiol 154:207–211

    Article  PubMed  CAS  Google Scholar 

  56. Kreslova J, Machon O, Ruzickova J, Lachova J, Wawrousek EF, Kemler R, Krauss S, Piatigorsky J, Kozmik Z (2007) Abnormal lens morphogenesis and ectopic lens formation in the absence of beta-catenin function. Genesis 45(4):157–168

    Article  PubMed  CAS  Google Scholar 

  57. Kunisato A, Wakatsuki M, Shinba H, Ota T, Ishida I, Nagao K (2011) Direct generation of induced pluripotent stem cells from human nonmobilized blood. Stem Cells Dev 20(1):159–168

    Article  PubMed  CAS  Google Scholar 

  58. Kupfer C (1987) Public health ophthalmology. Br J Ophthalmol 71:116–117

    Article  PubMed  CAS  Google Scholar 

  59. Lang RA (2004) Pathways regulating lens induction in the mouse. Int J Dev Biol 48(8–9):783–791

    Article  PubMed  CAS  Google Scholar 

  60. Le TT, Conley KW, Brown NL (2009) Jagged 1 is necessary for normal mouse lens formation. Dev Biol 328:118–126

    Article  PubMed  CAS  Google Scholar 

  61. Lewis KE, Drossopoulou G, Paton IR, Morrice DR, Robertson KE, Burt DW, Ingham PW, Tickle C (1999) Expression of ptc and gli genes in talpid3 suggests bifurcation in Shh pathway. Development 126(11):2397–2407

    Google Scholar 

  62. Liu W, Lagutin OV, Mende M, Streit A, Oliver G (2006) Six3 activation of Pax6 expression is essential for mammalian lens induction and specification. EMBO J 25:5383–5395

    Article  PubMed  CAS  Google Scholar 

  63. Lovicu FJ, McAvoy JW (2005) Growth factor regulation of lens development. Dev Biol 280(1):1–14

    Article  PubMed  CAS  Google Scholar 

  64. Lovicu FJ, McAvoy JW, de Iongh RU (2011) Understanding the role of growth factors in embryonic development: insights from the lens. Philos Trans R Soc Lond B Biol Sci 366(1568):1204–1218

    Article  PubMed  CAS  Google Scholar 

  65. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9(22):2808–2820

    Article  PubMed  CAS  Google Scholar 

  66. Marchetti V, Krohne TU, Friedlander DF, Friedlander M (2010) Stemming vision loss with stem cells. J Clin Invest 120(9):3012–3021

    Article  PubMed  CAS  Google Scholar 

  67. Martinez G, de Iongh RU (2010) The lens epithelium in ocular health and disease. Int J Biochem Cell Biol 42(12):1945–1963

    Article  PubMed  CAS  Google Scholar 

  68. Matsuo T, Tsutsui Y, Matsuo N (1998) Transdifferentiation of chick embryonic retinal pigment epithelial cells to lentoid structure in suspension culture. Acta Med Okayama 52(3):125–130

    PubMed  CAS  Google Scholar 

  69. Medina-Martinez O, Jamrich M (2007) Foxe view of lens development and disease. Development 134(8):1455–1463

    Article  PubMed  CAS  Google Scholar 

  70. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243(1–2):527–536

    Article  PubMed  CAS  Google Scholar 

  71. Michael R, Bron AJ (2011) The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci 366(1568):1278–1292

    Article  PubMed  CAS  Google Scholar 

  72. Mochii M, Ono T, Matsubara Y, Eguchi G (1998) Spontaneous transdifferentiation of quail pigmented epithelial cells is accompanied by a mutation in the Mitf gene. Dev Biol 196:145–159

    Article  PubMed  CAS  Google Scholar 

  73. Mohapatra S, Coppola D, Riker AI, Pledger WJ (2007) Roscovitine inhibits differentiation and invasion in a three-dimensional skin reconstruction model of metastatic melanoma. Mol Cancer Res 5(2):145–151

    Article  PubMed  CAS  Google Scholar 

  74. Monneret C (2005) Histone deacetylase inhibitors. Eur J Med Chem 40(1):1–13

    Article  PubMed  CAS  Google Scholar 

  75. Nagineni CN, Bhat SP (1992) Lens fiber cell differentiation and expression of crystallins in co-cultures of human fetal lens epithelial cells and fibroblasts. Exp Eye Res 54(2):193–200

    Article  PubMed  CAS  Google Scholar 

  76. O'Connor MD, McAvoy JW (2007) In vitro generation of functional lens-like structures with relevance to age-related nuclear cataract. Invest Ophthalmol Vis Sci 48(3):1245–1252

    Article  PubMed  Google Scholar 

  77. Ooto S, Haruta M, Honda Y, Kawasaki H, Sasai Y, Takahashi M (2003) Induction of the differentiation of lentoid from primate embryonic stem cells. Invest Ophthalmol Vis Sci 44:2689–2693

    Article  PubMed  Google Scholar 

  78. Pajak B, Orzechowski A, Gajkowska B (2007) Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells. Adv Med Sci 52:83–88

    PubMed  CAS  Google Scholar 

  79. Pan Y, Woodbury A, Esko JD, Grobe K, Zhang X (2006) Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development. Development 133(24):4933–4944

    Article  PubMed  CAS  Google Scholar 

  80. Pandit T, Jidigam VK, Gunhaga L (2011) BMP-induced L-Maf regulates subsequent BMP-independent differentiation of primary lens fibre cells. Dev Dyn 240(8):1917–1928

    Article  PubMed  CAS  Google Scholar 

  81. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  PubMed  CAS  Google Scholar 

  82. Piatigorsky J (1981) Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation 19(3):134–153

    Article  PubMed  CAS  Google Scholar 

  83. Placantonakis DG, Tomishima MJ, Lafaille F, Desbordes SC, Jia F, Socci ND, Viale A, Harrison N, Tabar V, Studer L (2009) BAC transgenesis in human embryonic stem cells as a novel toll to define the human neuronal lineage. Stem Cells 27:521–532

    Article  PubMed  CAS  Google Scholar 

  84. Plimack ER, Kantarjian HM, Issa JP (2007) Decitabine and its role in the treatment of hematopoietic malignancies. Leuk Lymphoma 48(8):1472–1481

    Article  PubMed  CAS  Google Scholar 

  85. Qiu X, Yang J, Liu T, Jiang Y, Le Q, Lu Y (2012) Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells. PLoS One 7(3):e32612

    Article  PubMed  CAS  Google Scholar 

  86. Rajagopal R, Huang J, Dattilo LK, Kaartinen V, Mishina Y, Deng CX, Umans L, Zwijsen A, Roberts AB, Beebe DC (2009) The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation. Dev Biol 335(2):305–316

    Article  PubMed  CAS  Google Scholar 

  87. Reddy VN, Lin LR, Arita T, Zigler JS Jr, Huang QL (1988) Crystallins and their synthesis in human lens epithelial cells in tissue culture. Exp Eye Res 47(3):465–478

    Article  PubMed  CAS  Google Scholar 

  88. Robinson ML (2006) An essential role for FGF receptor signaling in lens development. Semin Cell Dev Biol 17(6):726–740

    Article  PubMed  CAS  Google Scholar 

  89. Rosato RR, Almenara JA, Maggio SC, Atadja P, Craig R, Vrana J, Dent P, Grant S (2005) Potentiation of the lethality of the histone deacetylase inhibitor LAQ824 by the cyclin-dependent kinase inhibitor roscovitine in human leukemia cells. Mol Cancer Ther 4(11):1772–1785

    Article  PubMed  CAS  Google Scholar 

  90. Rowan S, Conley KW, Le TT, Donner AL, Maas RL, Brown NL (2008) Notch signaling regulates growth and differentiation in mammalian lens. Dev Biol 321(1):111–122

    Article  PubMed  CAS  Google Scholar 

  91. Rubin LL, Haston KM (2011) Stem cell biology and drug discovery. BMC Biol 9:42

    Article  PubMed  CAS  Google Scholar 

  92. Sakuta H, Suzuki R, Takahashi H, Kato A, Shintani T, Si I, Yamamoto TS, Ueno N, Noda M (2001) Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293(5527):111–115

    Article  PubMed  CAS  Google Scholar 

  93. Saravanamuthu SS, Le TT, Gao CY, Cojocaru RI, Pandiyan P, Liu CQ, Zhang J, Zelenka PS, Brown NL (2012) Conditional ablation of the Notch2 receptor in the ocular lens. Dev Biol 362(2):219–229

    Google Scholar 

  94. Schnekenburger M, Grandjenette C, Ghelfi J, Karius T, Foliguet B, Dicato M, Diederich M (2011) Sustained exposure to the DNA demethylating agent, 2′-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence, and autophagy. Biochem Pharmacol 81(3):364–378

    Article  PubMed  CAS  Google Scholar 

  95. Seki T, Yuasa S, Fukuda K (2011) Derivation of induced pluripotent stem cells from human peripheral circulating T cells. Curr Protoc Stem Cell Biol 18:4A3.1–4A3.9

    Google Scholar 

  96. Semina EV, Ferrell RE, Mintz-Hittner HA, Bitoun P, Alward WL, Reiter RS, Funkhauser C, Daack-Hirsch S, Murray JC (1998) A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 19(2):167–170

    Article  PubMed  CAS  Google Scholar 

  97. Shiels A, Hejtmancik JF (2007) Genetic origins of cataract. Arch Ophthalmol 125:165–173

    Article  PubMed  CAS  Google Scholar 

  98. Shiels A, Bennett TM, Hejtmancik JF (2010) Cat-Map: putting cataract on the map. Mol Vis 16:2007–2015

    PubMed  CAS  Google Scholar 

  99. Sjödal M, Edlund T, Gunhaga L (2007) Time of exposure to BMP signals plays a key role in the specification of the olfactory and lens placodes ex vivo. Dev Cell 13(1):141–149

    Article  PubMed  CAS  Google Scholar 

  100. Smaoui N, Beltaief O, BenHamed S, M'Rad R, Maazoul F, Ouertani A, Chaabouni H, Hejtmancik JF (2004) A homozygous splice mutation in the HSF4 gene is associated with an autosomal recessive congenital cataract. Invest Ophthalmol Vis Sci 45(8):2716–2721

    Article  PubMed  Google Scholar 

  101. Smith AN, Miller LA, Song N, Taketo MM, Lang RA (2005) The duality of beta-catenin function: a requirement in lens morphogenesis and signaling suppression of lens fate in periocular ectoderm. Dev Biol 285(2):477–489

    Article  PubMed  CAS  Google Scholar 

  102. Smith AN, Radice G, Lang RA (2010) Which FGF ligands are involved in lens induction? Dev Biol 337(2):195–198

    Article  PubMed  CAS  Google Scholar 

  103. Sperduto RD, Siegel D (1980) Senile lens and senile macular changes in a population-based sample. Am J Ophthalmol 90:86–91

    PubMed  CAS  Google Scholar 

  104. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2(3):230–240

    Article  PubMed  CAS  Google Scholar 

  105. Streit A (2004) Early development of the cranial sensory nervous system: from a common field tom individual placodes. Dev Biol 276:1–15

    Article  PubMed  CAS  Google Scholar 

  106. Swindell EC, Liu C, Shah R, Smith AN, Lang RA, Jamrich M (2008) Eye formation in the absence of retina. Dev Biol 322(1):56–64

    Article  PubMed  CAS  Google Scholar 

  107. Takahashi M, Haruta M (2006) Derivation and characterization of lentoid bodies and retinal pigment epithelial cells from monkey embryonic stem cells in vitro. Methods Mol Biol 330:417–429

    PubMed  CAS  Google Scholar 

  108. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  109. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  110. Tomishima MJ, Hadjantonakis AK, Gong S, Studer L (2007) Production of green fluorescent protein transgenic embryonic stem cells using the GENSAT bacterial artificial chromosome library. Stem Cells 25(1):39–45

    Article  PubMed  CAS  Google Scholar 

  111. Ueno M, Matsumura M, Watanabe K, Nakamura T, Osakada F, Takahashi M, Kawasaki H, Kinoshita S, Sasai Y (2006) Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc Natl Acad Sci USA 103(25):9554–9559

    Article  PubMed  CAS  Google Scholar 

  112. Wagner LM, Takemoto DJ (2001) Protein kinase C alpha and gamma in N/N 1003A rabbit lens epithelial cell differentiation. Mol Vis 7:57–62

    PubMed  CAS  Google Scholar 

  113. Walker JL, Wolff IM, Zhang L, Menko AS (2007) Activation of SRC kinases signals induction of posterior capsule opacification. Invest Ophthalmol Vis Sci 48(5):2214–2223

    Article  PubMed  Google Scholar 

  114. Walker JL, Zhang L, Menko AS (2002) Transition between proliferation and differentiation for lens epithelial cells is regulated by Src family kinases. Dev Dyn 224(4):361–372

    Article  PubMed  CAS  Google Scholar 

  115. Wandl S, Wesierska-Gadek J (2009) Is olomoucine, a weak CDK2 inhibitor, able to induce apoptosis in cancer cells? Ann N Y Acad Sci 1171:242–249

    Article  PubMed  CAS  Google Scholar 

  116. Wawersik SP, Purcell P, Rauchman M, Dudley AT, Robertson EJ, Maas R (1999) BMP7 acts in murine lens placode development. Dev Biol 207:176–188

    Article  PubMed  CAS  Google Scholar 

  117. Wederell ED, de Iongh RU (2006) Extracellular matrix and integrin signaling in lens development and cataract. Semin Cell Dev Biol 17(6):759–776

    Article  PubMed  CAS  Google Scholar 

  118. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  PubMed  CAS  Google Scholar 

  119. Wu G, Glickstein S, Liu W, Fujita T, Li W, Yang Q, Duvoisin R, Wan Y (2007) The anaphase-promoting complex coordinates initiation of lens differentiation. Mol Biol Cell 18(3):1018–1029

    Article  PubMed  CAS  Google Scholar 

  120. Yabut O, Bernstein HS (2011) The promise of human embryonic stem cells in aging-associated diseases. Aging (Albany, NY) 3(5):494–508

    CAS  Google Scholar 

  121. Yamanaka S (2009) A fresh look at iPS cells. Cell 137:13–17

    Article  PubMed  CAS  Google Scholar 

  122. Yang C, Yang Y, Brennan L, Bouhassira EE, Kantorow M, Cvekl A (2010) Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J 24(9):3274–3283

    Article  PubMed  CAS  Google Scholar 

  123. Yang Y, Cvekl A (2007) Large Maf transcription factors: cousins of AP-1 proteins and important regulators of cellular differentiation. Einstein J Biol Med 23(1):2–11

    PubMed  CAS  Google Scholar 

  124. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    Article  PubMed  CAS  Google Scholar 

  125. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Google Scholar 

  126. Zhao H, Yang T, Madakashira BP, Thiels CA, Bechtle CA, Garcia CM, Zhang H, Yu K, Ornitz DM, Beebe DC, Robinson ML (2008) Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev Biol 318(2):276–288

    Article  PubMed  CAS  Google Scholar 

  127. Zhao HX, Li Y, Jin HF, Xie L, Liu C, Jiang F, Luo YN, Yin GW, Li Y, Wang J, Li LS, Yao YQ, Wang XH (2010) Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation 80(2–3):123–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Louise Wolf for critical suggestions. We are grateful to Dr. Eric Bouhassira and ES cell core facilities at the Ruth L. and Davis S. Gottesman Institute for Stem Cell Research and Regenerative Medicine of the Albert Einstein College of Medicine for their continuous support. Grant support to AC: R01 EY102200, EY014237 and R21 EY020621. The Department of Ophthalmology and Visual Sciences is supported by an unrestricted grant from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ales Cvekl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cvekl, A., Yang, Y., Jing, Y., Xie, Q. (2013). Lens Differentiation from Embryonic Stem (ES) and Induced Pluripotent Stem (iPS) Cells. In: Tsang, S. (eds) Stem Cell Biology and Regenerative Medicine in Ophthalmology. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5493-9_4

Download citation

Publish with us

Policies and ethics