Skip to main content
Book cover

Sensors pp 63–148Cite as

Transduction Platforms

  • Chapter
  • First Online:
  • 5332 Accesses

Abstract

The major transduction platforms utilized in sensing applications will be presented and discussed. The focus is on systems, which can be fabricated and set up utilizing available industrial development processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Curkov LM, McCromick PG, Galatsis K, Wlodarski W (2001) Gas sensing properties of nanosized tin oxide synthesised by mechanochemical processing. Sensors Actuators B Chem 77:491–495

    Google Scholar 

  2. Lukosz W (1991) Principles and Sensitivities of Integrated Optical and Surface- Plasmon Sensors For Direct Affinity Sensing and Immunosensing. Biosensors Bioelectronics 6:215–225

    Google Scholar 

  3. Homola J, Yee SS, Gauglitz G (1999) Surface Plasmon resonance sensors: review. Sensors Actuator B Chem 54:3–15

    Google Scholar 

  4. Kretschmann E (1971) Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberfldchenplasmaschwingungen. Physik Z 241:313–324

    Google Scholar 

  5. Yaacob MH, Breedon M, Kalantar-zadeh K, Wlodarski W (2009) Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2. Sensors Actuators B Chem 137:115–120

    Google Scholar 

  6. Prodi L, Bolletta F, Montalti M, Zaccheroni N (1998) A Fluorescent sensor for magnesium ions. Tetrahedron Lett 39:5451–5454

    Google Scholar 

  7. Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P (2003) Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229–1233

    Google Scholar 

  8. Skoog DA, Holler FJ, Crouch SR (2006) Principles of instrumental analysis, 6th edn. Brooks Cole, Belmont

    Google Scholar 

  9. Wang J, Bhada RK, Lu J, MacDonald D (1998) Remote electrochemical sensor for monitoring TNT in natural waters. Analytica Chimica Acta 361:85–91

    Google Scholar 

  10. Li J, Peng T, Peng Y (2003) A Cholesterol Biosensor Based on Entrapment of Cholesterol Oxidase in a Silicic Sol-Gel Matrix at a Prussian Blue Modified Electrode. Electroanalysis 15:1031–1037

    Google Scholar 

  11. Sze SM, Ng KK (2006) Physics of semiconductor devices, 3rd edn. New York, Wiley-Interscience

    Google Scholar 

  12. Wise KD, Angell JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng 17:238–247

    Google Scholar 

  13. Bergveld P (2003) Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem 88:1–20.

    Google Scholar 

  14. Bergveld P (1970) Development of an Ion-Sensitive Solid-State Device for Neuro-Physiological Measurements. IEEE Trans Biomed Eng 17:70–71

    Google Scholar 

  15. Caras S, Janata J (1980) Field-effect transistor sensitive to penicillin. Anal Chem 52:1935–1937

    Google Scholar 

  16. Raiteri R, Grattarola M, Butt HJ, Skladal P (2001) Micromechanical cantilever-based biosensors. Sensors Actuators B Chem 79:115–126

    Google Scholar 

  17. Ballntine DS, Wohltjen H (1989) Surface acoustic wave devices for chemical analysis. Anal Chem 61:A704–A706

    Google Scholar 

  18. Ricco AJ, Martin SJ, Zipperian TE (1988) Surface acoustic wave gas sensors based on film conductivity changes. Sensors Actuators B Chem 8:978–984

    Google Scholar 

  19. Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. Proc IEEE 86:1640–1659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kalantar-zadeh, K. (2013). Transduction Platforms. In: Sensors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5052-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5052-8_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-5051-1

  • Online ISBN: 978-1-4614-5052-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics