Skip to main content

Chemistry of the Caseins

  • Chapter
  • First Online:

Abstract

The caseins are the predominant class of proteins in the milk of all common dairying species. This class represents four phosphoproteins, i.e. αs1-, αs2-, β- and κ-casein. Their amino acid sequence combined with post-translational phosphorylation and, in the case of κ-casein, glycosylation yields a unique class of rheomorphic proteins which contain comparatively little secondary and tertiary structure and associate to form crucial building blocks for casein micelles. This chapter discusses the chemistry and biochemistry of caseins, with particular attention to primary and higher order structures, genetic variation, post-translational modification, disulphide interactions, self-association and interactions with minerals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adzhubei, A.A. and Sternberg, M.J.E. (1993). Left-handed polyproline II helices commonly occur in globular proteins. J. Mol. Biol. 229, 472–493.

    Google Scholar 

  • Andrews, A.L., Atkinson, D., Evans, M.T.A., Finer, E.G., Green, J.P., Phillips, M.C. and Robertson, R.N. (1979). The conformation and aggregation of bovine β-casein A. I. Molecular aspects of thermal aggregation. Biopolymers 18, 1105–1121.

    Google Scholar 

  • Aoki, T., Toyooka, K. and Kako, Y. (1985). Role of phosphate groups in the calcium sensitivity of αs2-casein. J. Dairy Sci. 68, 1624–1629.

    Google Scholar 

  • Arima, S., Niki, R. and Takase, K. (1979). Structure of β-casein. J. Dairy Res. 46, 281–282.

    Google Scholar 

  • Azuma, N., Nara, K. and Kanno, C. (1991). Enzymic modification of αs1-casein with peptidylarginine deiminase: preparation of less acid-coagulable and less calcium-sensitive casein. J. Dairy Res. 58, 421–429.

    Google Scholar 

  • Baumy, J.J. and Brule, G. (1988). Effect of pH and ionic strength on the binding of bivalent cations to β-casein. Lait 68, 409–418.

    Google Scholar 

  • Bech, A.M. and Kristiansen, K.R. (1990). Milk protein polymorphism in Danish dairy cattle and the influence of genetic variants on milk yield. J. Dairy Res. 57, 53–62.

    Google Scholar 

  • Berry, G.P. and Creamer, L.K. (1975). The association of bovine β-casein. The importance of the C-terminal region. Biochem. 14, 3542–3545.

    Google Scholar 

  • Bingham, E.W., Farrell, H.M., and Carroll, R.J., Jr. (1972). Properties of dephosphorylated αs1-casein. Preci­pitation by calcium ions and micelle formation. Biochem. 11, 2450–2454.

    Google Scholar 

  • Bonsing, J., Ring, J.M., Stewart, A.F. and MacKinlay, A.G. (1988). Complete nucleotide sequence of the bovine beta-casein gene. Aust. J. Biol. Sci. 41, 527–537

    Google Scholar 

  • Bouniol, C., Printz, C. and Mercier J.-C. (1993). Bovine αS2-casein D is generated by exon VIII skipping. Gene 128, 289–293.

    Google Scholar 

  • Brignon, G., Ribadeau-Dumas, B. and Mercier, J.-C. (1976). Premiers elements de structure primaire des caseines αs2 bovines. FEBS Lett. 71, 111–116.

    Google Scholar 

  • Brignon, G.B., Ribadeau-Dumas, B., Mercier, J.-C., Pelissier, J.-P. and Das, B.C. (1977). The complete amino acid sequence of bovine αS2-casein. FEBS Lett. 76, 274–279.

    Google Scholar 

  • Buchheim, W. and Schmidt, D.G. (1979). On the size of monomers and polymers of β-casein. J. Dairy Res. 46, 277–280.

    Google Scholar 

  • Byler, D.M. and Susi, H. (1986). Examination of the secondary structure of proteins by deconvoluted FTIR spectra. Biopolymers 25, 469–487.

    Google Scholar 

  • Byler, D.M., Farrell, H.M., Jr. and Susi, H. (1988). Raman spectroscopic study of casein structure. J. Dairy Sci. 71, 2622–2629.

    Google Scholar 

  • Caessens, P.W.J.R., De Jongh, H.H.J., Noide, W. and Gruppen, H. (1999). The absorption-induced secondary structure of β-casein and of distinct parts of its sequence. Biochim. Biophys. Acta 1430, 73–83.

    Google Scholar 

  • Carles, C., Huet, J.-C. and Ribadeau-Dumas, B. (1988). A new strategy for primary structure determination of proteins: application to β-casein. FEBS Lett. 229, 265–272.

    Google Scholar 

  • Chung, E.R., Han, S.K. and Rhim, T.J. (1995). Milk protein polymorphisms as genetic markers in Korean native cattle. Asian Austral. J. Anim. Sci. 8, 187–194.

    Google Scholar 

  • Coolbear, K.P., Elgar, D.F. and Ayers, J.S. (1996). Profiling of genetic variants of bovine κ-casein macropeptide by electrophoretic and chromatographic techniques. Int. Dairy J. 6, 1055–1068.

    Google Scholar 

  • Corradini, C. (1969). Distribution of the genetic variants αs1-, β-, and κ-caseins in milk from Jersey cows in The Netherlands. Neth. Milk Dairy J. 23, 79–82.

    Google Scholar 

  • Creamer, L.K., Richardson, T. and Parry, D.A.D. (1981). Secondary structure of bovine αs1- and β-casein in solution. Arch. Biochem. Biophys. 211, 689–696.

    Google Scholar 

  • Creamer, L.K., Plowman, J.E., Liddell, M.J., Smith, M.H. and Hill. J.P. (1998). Micelle stability: κ-casein structure and function. J. Dairy Sci. 81, 3004–3012.

    Google Scholar 

  • Dalgleish, D.G. and Parker, T.G. (1980). Binding of calcium ions to bovine αs1-casein and precipitability of the protein-calcium ion complexes. J. Dairy Res. 47, 113–122.

    Google Scholar 

  • Dalgleish, D.G., Paterson, E. and Horne, D.S. (1981). Kinetics of aggregation of αs1-casein/Ca2+ mixtures: charge and temperature effects. Biophys. Chem. 13, 307–314.

    Google Scholar 

  • Darewicz, M., Dziuba, J., Mioduszewska, H. and Minkiewicz, P. (1999). Modulation of physico-chemical properties of bovine β-casein by non-enzymatic glycation associated with enzymatic dephosphorylation. Acta Aliment. 28, 339–354.

    Google Scholar 

  • De Kruif, C.G. and Grinberg, V.Y. (2002). Micellisation of β-casein. Colloid. Surface. A 210, 183–190.

    Google Scholar 

  • De Kruif, C.G. and Holt, C. (2003). Casein micelle structure, functions and interactions, in Advanced Dairy Chemistry 1: Proteins, 3rd edn. P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York. pp. 233–276.

    Google Scholar 

  • De Kruif, C.G. and May, R.P. (1991). κ-Casein micelles: structure, interaction and gelling studied by small-angle neutron scattering. Eur. J. Biochem. 200, 431–436.

    Google Scholar 

  • De Kruif, C.G., Tuinier, R., Holt, C., Timmins, P.A. and Rollema, H.S. (2002). Physicochemical study of κ- and β-casein dispersion and the effect of cross-linking by transglutaminase. Langmuir 18, 4885–4891.

    Google Scholar 

  • Dong, C. and Ng-Kwai-Hang, K.F. (1998). Characterization of a nonelectrophoretic genetic variant of β-casein by peptide mapping and mass spectroscopic analysis. Int. Dairy J. 8, 967–972.

    Google Scholar 

  • Dosaka, S., Kimura, T., Taneya, S., Sone, T., Kaminogawa, S. and Yamauchi, K. (1980). Polymerization of αs1-casein by calcium ions. Agric. Biol. Chem. 44, 2443–2448.

    Google Scholar 

  • Ecroyd, H., Koudelka, T., Thorn, D.C., Williams, D.M., Devlin, G., Hoffman, P. and Carver, J.A. (2008). Dissociation from the oligomeric state is the rate-limiting step in fibril formation by κ-casein. J. Biol. Chem. 283, 9012–9022.

    Google Scholar 

  • Ecroyd, H., Thorn, D.C., Lui, Y. and Carver, J.A. (2010). The dissociated form of κ-casein is the precursor to its amyloid fibril formation. Biochem. J. 429, 251–260.

    Google Scholar 

  • Eigel, W.N., Butler, J.E., Ernstrom, C.A., Farrell, H.M., Jr., Harwalkar, V.R., Jenness, R. and Whitney, R.M. (1984). Nomenclature of proteins of cow’s milk: fifth revision. J. Dairy Sci. 67, 1599–1631.

    Google Scholar 

  • Erhardt, G. (1993). A new αs1-casein allele in bovine milk and its occurrence in different breeds. Anim. Genet. 24, 65–66.

    Google Scholar 

  • Erhardt, G. (1996). Detection of a new κ-casein variant in the milk of Pinzgauer cattle. Anim. Genet. 27, 105–107.

    Google Scholar 

  • Evans, M.T.A. and Phillips, M.C. (1979). The conformation and aggregation of bovine beta-casein A. II. Thermodynamics of thermal association and the effects of changes in polar and apolar interactions on micellization. Biopolymers 18, 1123–1140.

    Google Scholar 

  • Farrell, H.M. Jr., Kumosinski, T.F., Thompson, M.P. and Pulaski, P. (1988). Calcium induced associations of the caseins: a thermodynamic linkage approach to precipitation and resolubilization. Arch. Biochem. Biophys. 265, 146–158.

    Google Scholar 

  • Farrell, H.M. Jr., Kumosinski, T.F., Cooke, P.H., King, G., Hoagland, P.D., Wickham, E.D., Dower, H.J. and Groves, M.L. (1996). Particle size of purified κ-casein: metal effect and correspondence with predicted three-dimensional molecular models. J. Prot. Chem. 15, 435–445.

    Google Scholar 

  • Farrell, H.M. Jr., Wickham, E.D., Unruh, J.J., Qi, P.X. and Hoagland, P.D. (2001). Secondary structure studies of bovine caseins: temperature dependence of β-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization. Food Hydrocolloid 15, 341–354.

    Google Scholar 

  • Farrell, H.M. Jr., Cooke, P.H., Wickham, E.D., Piotrowski, E.G. and Hoagland, P.D. (2003). Environmental influences of bovine κ-casein: reduction and conversion to fibrillar (amyloid) structures. J. Prot. Chem. 22, 259–273.

    Google Scholar 

  • Farrell, H.M., Jr., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng-Kwai-Hang, K.F. and Swaisgood, H.E. (2004). Nomenclature of the proteins of cows’ milk: sixth revision. J. Dairy Sci. 87, 1641–1674.

    Google Scholar 

  • Farrell, H.M. Jr., Malin, E.L., Brown, E.M. and Mora-Gutierrez, A. (2009). Review of the chemistry of αs2-casein and the generation of a homolgous molecular model to explain its properties. J. Dairy Sci. 92, 1338–1353.

    Google Scholar 

  • Gagnard, S., Zuev, Y., Gaudin, J.-C., Fedotov, V., Choiset, Y., Axelos, M.A.V., Chobert, J.-M. and Haertle, T. (2007). Modifications of the charges at the N-terminus of bovine β-casein: consequences on its structure and its micellisation. Food Hydrocolloid 21, 180–190.

    Google Scholar 

  • Garnier, J. (1966). Conformation of β-casein in solution. Analysis of a thermal transition between 5 and 40°C. J. Mol. Biol. 19, 586–590.

    Google Scholar 

  • Garnier, J., Osguthorpe, D.J. and Robinson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–120.

    Google Scholar 

  • Gouldsworthy, A.M., Leaver, J. and Banks, J.M. (1996). Application of a mass spectrometry sequencing technique for identifying peptides present in Cheddar cheese. Int. Dairy J. 6, 781–791.

    Google Scholar 

  • Graham, E.R.B., Malcolm, G.N. and McKenzie, H.A. (1984). On the isolation and conformation of bovine β-casein A1. Int. J. Biol. Macromol. 6, 155–161.

    Google Scholar 

  • Griffin, M.C.A., Price, J.C. and Martin, S.R. (1986). Effect of alcohols on the structure of caseins: circular dichroism studies of κ-casein A. Int. J. Biol. Macromol. 8, 367–371.

    Google Scholar 

  • Groenen, M.A.M., Dijkhof, R.E.M., Verstege, A.J.M. and Van der Poel, J.J. (1993). The complete sequence of the gene encoding bovine αS2-casein. Gene 123, 187–193.

    Google Scholar 

  • Grosclaude, F. (1988). Le polymorphisme genetique des principales actoproteines bovines. Relations avec la quantite, la composition et les aptitudes fromageres du lait. INRA Prod. Anim. 1, 5–17.

    Google Scholar 

  • Grosclaude, F., Mercier, J.-C. and Ribadeau-Dumas, B. (1969). Sur la localisation, dans la séquence COOH-terminale de la caseine alpha-S1 bovine, de la substitution GLU-GLY différenciant les variants génétiques B et C. CR Acad. Sci. D: Sci. Natur. 268, 3133–3136.

    Google Scholar 

  • Grosclaude, F., Mahe, M.-F., Mercier, J.-C. and Ribadeua-Dumas, B. (1970). Localisation, dans la partie NH2-terminale de la caséine αs1 bovine, d’une délétion de 13 acides aminés différenciant le variant a des variants B et C. FEBS Lett. 11, 109–112.

    Google Scholar 

  • Grosclaude, F., Mahe, M.-F., Mercier, J.-C. and Ribadeau-Dumas, B. (1972). Caracterisation des variants genetiques des caseines αs1 et β bovines. Eur. J. Biochem. 26, 328–337.

    Google Scholar 

  • Grosclaude, F., Mahe, M.-F. and Ribadeau-Dumas, B. (1973). Structure primaire de la caseine αs1- et de la caseine β-bovine. Eur. J. Biochem. 40, 323–324.

    Google Scholar 

  • Grosclaude, F., Mahe, M.-F. and Mercier, J.-C. (1974a). Comparison du polymorphisme genetique des lactoproteines du zebu et des bovines. Ann. Genet. Sel. Anim. 6, 305–329.

    Google Scholar 

  • Grosclaude, F., Mahe, M.-F. and Voglino, G.-F. (1974b). Le variant βE et le code de phosphorylation des caseins bovines. FEBS Lett. 45, 3–5.

    Google Scholar 

  • Grosclaude, F., Mahe, M.-F., Mercier, J.-C., Bonnemaire, J. and Teissier, J.H. (1976). Polymorphisme des lactoproteines de bovines Nepalais. Polymorphisme des caseine αs2-mineurs. Ann. Genet. Sel. Evol. 8, 461–479.

    Google Scholar 

  • Grosclaude F., Joudrier, P. and Mahe, M.-F. (1978). Polymorphisme de la caseine αS2 bovine: Etroite liaison du locus αS2-Cn avec les loci αs1-Cn, β-Cn et κ-Cn; mise en evidence d’une deletion dans le variant αS2-Cn D. Ann. Genet. Sel. Anim. 10, 313–327.

    Google Scholar 

  • Grosclaude, F., Mahe, M.-F. and Accolas, J.P. (1982). Note sur le polymorphisme genetique des lactoproteines de bovins et de yaks Mongols. Ann. Genet. Sel. Anim. 14, 545–550.

    Google Scholar 

  • Groves, M.L. (1969). Some minor components of casein and other phosphoproteins in milk. A review. J. Dairy Sci. 52, 1155–1165.

    Google Scholar 

  • Groves, M.L., Dower, H.J. and Farrell, H.M. Jr. (1992). Reexamination of the polymeric distributions of κ-casein isolated from bovine milk. J. Prot. Chem. 11, 21–27.

    Google Scholar 

  • Groves, M.L., Wickham, E.D. and Farrell, H.M. Jr. (1998). Environmental effects on disulphide bonding patterns of bovine κ-casein. J. Prot. Chem. 17, 73–84.

    Google Scholar 

  • Han, S.K., Shin, Y.C. and Byun, H.D. (2000). Biochemical, molecular and physiological characterization of a new β-casein variant detected in Korean cattle. Anim. Genet. 31, 49–51.

    Google Scholar 

  • Herskovits, T.T. (1966). On the conformation of casein. ORD properties. Biochem. 5, 1018–1026.

    Google Scholar 

  • Ho, C. and Waugh, D.F. (1965). Interactions of bovine αs-casein with small ions. J. Am. Chem. Soc. 87, 110–117.

    Google Scholar 

  • Hoagland, P.D., Unruh, J.J., Wickham, E.D. and Farrell, H.M. Jr. (2001). Secondary structure of bovine αs2-casein: theoretical and experimental approaches. J. Dairy Sci. 84, 1944–1949.

    Google Scholar 

  • Holland, J.W., Deeth, H.C. and Alewood, P.F. (2004). Proteomic analysis of κ-casein microheterogeniety. Proteomics 4, 743–752.

    Google Scholar 

  • Holland, J.W., Deeth, H.C. and Alewood, P.F. (2005). Analysis of O-glycosylation site occupancy in bovine κ-casein glycoforms separated by two-dimensional gel electrophoresis. Proteomics 5, 990–1002.

    Google Scholar 

  • Holland, J.W., Deeth, H.C. and Alewood, P.F. (2006). Resolution and characterization of multiple isoforms of bovine κ-casein by 2-DE followed by reversible cysteine-tagging enrichment strategy. Proteomics 6, 3087–3095.

    Google Scholar 

  • Holt, C. and Sawyer, L. (1988). Primary and predicted secondary structures of the caseins in relation to their biological functions. Protein Eng. 2, 251–259.

    Google Scholar 

  • Holt, C., Parker, T.G. and Dalgleish, D.G. (1975). The thermochemistry of reactions between αs1-casein and calcium chloride. Biochim. Biophys. Acta 379, 638–644.

    Google Scholar 

  • Jann, O., Ceriotti, G., Caroli, A. and Erhardt, G. (2002). A new variant in exon VII of the bovine β-casein gene (CSN2) and its distribution among European cattle breeds. J. Anim. Breed. Genet. 119, 65–68.

    Google Scholar 

  • Jenness, R., Larson, B.L., McMeekin, T.L., Swanson, A.M., Whitnah, C.H. and Whitney, R.M. (1956). Nomenclature of the proteins of bovine milk. J. Dairy Sci. 39, 536–541.

    Google Scholar 

  • Jimenez-Flores, R., Kang, Y.C. and Richardson, T. (1987). Cloning and sequence analysis of bovine β-casein cDNA. Biochem. Biophys. Res. Comm. 142, 617–621.

    Google Scholar 

  • Kajiwara, K., Niki, R., Urakawa, H., Hiragi, Y., Donkai, N. and Nagura, M. (1988). Micellar structure of β-casein observed by small-angle X-ray scattering. Biochim. Biophys. Acta 955, 128–134.

    Google Scholar 

  • Kumosinski, T.F., Brown, E.M. and Farrell, H.M. Jr. (1991). Three-dimensional molecular modeling of bovine caseins: κ-casein. J. Dairy Sci. 74, 2879–2887.

    Google Scholar 

  • Kumosinski, T.F., Brown, E.M. and Farrell, H.M. Jr. (1993). Refined molecular modeling of bovine caseins: a refined energy-minimized κ-casein structure. J. Dairy Sci. 76, 2507–2520.

    Google Scholar 

  • Leclerc, E. and Calmettes, P. (1997a). Interactions in micellar solutions of β-casein. Physica B 234–236, 207–209.

    Google Scholar 

  • Leclerc, E. and Calmettes, P. (1997b). Interactions in micellar solutions of β-casein. Phys. Rev. Lett. 78, 150–153.

    Google Scholar 

  • Leclerc, E. and Calmettes, P. (1998). Structure of β-casein micelles. Physica B 241–243, 1141–1143.

    Google Scholar 

  • Leonil, J., Henry, G., Jouanneau, D., Delage, M.-M., Forge, V. and Putaux, J.-L. (2008). Kinetics of fibril formation of bovine κ-casein indicate a conformational reaarangement as a critical step in the process. J. Mol. Biol. 381, 1267–1280.

    Google Scholar 

  • Mahe, M.-F. and Grosclaude, F. (1982). Polymorphisme de la caseine αS2 des bovines: characterization du variant C du yak (Bos grunniens). Ann. Genet. Sel. Anim. 14, 401–416.

    Google Scholar 

  • Mahe, M.-F., Miranda, G., Queral, R., Bado, A., Souvenir-Zafidrajaona, P. and Grosclaude, F. (1999). Genetic polymorphism of milk proteins in African Bos taurus and Bos indicus populations characterization of variants αS1-Cn H and κ-Cn. J. Genet. Sel. Evol. 31, 239–253.

    Google Scholar 

  • Malin, E.L., Brown, E.M., Wickham, E.D. and Farrell, H.M. Jr. (2005). Contributions of terminal peptides to associative behavior of αs1-casein. J. Dairy Sci. 88, 2318–2328.

    Google Scholar 

  • Manson, W., Carolan, T. and Annan, W.D. (1977). Bovine αs0-casein; a phosphorylated homologue of αs1-casein. Eur. J. Biochem. 78, 411–417.

    Google Scholar 

  • Mariani, P. and Russo, V. (1975). Varianti genetiche delle α protein del latte nella razza. Rendena. Riv. Zootec. Vet. 3, 345–348.

    Google Scholar 

  • Mariani, P., Summer, A., Anghinetti, A., Senese, C., Di Gregorio, P., Rando, P. and Serventi, P. (1995). Effects of the αs1-CN G allele on the percentage distribution of caseins αs1-, αs2-, β-, and κ- in Italian Brown cows. Ind. Latte 31, 3-13.

    Google Scholar 

  • Mercier, J.-C. (1981). Phosphorylation of the caseins, present evidence for an amino acid triplet code posttranslationally recognized by specific kinases. Biochimie 63, 1–17.

    Google Scholar 

  • Mercier, J.-C., Grosclaude, F. and Ribadeau-Dumas, B. (1971). Structure primaire de la caseine αs1 bovine. Sequence complete. Eur. J. Biochem. 23, 41–51.

    Google Scholar 

  • Mercier, J.-C., Brignon, G. and Ribadeau-Dumas, B. (1973). Structure primarie de la caseine κ-bovine B. Sequence complete. Eur. J. Biochem. 35, 222–235.

    Google Scholar 

  • Mikheeva, L.M., Grinberg, N.V., Grinberg, V.Ya., Khokhlov, A.R. and De Kruif, C.G. (2003). Thermodynamics of micellization of bovine β-casein by high-sensitivity differential scanning calorimetry. Langmuir 19, 2913–2921.

    Google Scholar 

  • Minkiewicz, P., Slangen, C.J., Lagerwerf, F.M., Haverkamp, J., Rollema, H.S. and Visser, S. (1996). Reversed-phase high-performance liquid chromatographic separation of bovine κ-casein macropeptide and characterization of isolated fractions. J. Chrom. A 743, 123–135.

    Google Scholar 

  • Miranda, G., Anglade, P., Mahe, M.-F. and Erhardt, G. (1993). Biochemical characterization of the bovine genetic kappa-casein C and E variants. Anim. Genet. 4, 27–31.

    Google Scholar 

  • Molle, D. and Leonil, J. (1995). Heterogeneity of the bovine κ-casein caseino-macropeptide, resolved by liquid chromatography on-line with electrospray ionization mass spectrometry. J. Chrom. A 708, 223–230.

    Google Scholar 

  • Ng-Kwai-Hang, K.F. and Grosclaude, F. (2003). Genetic polymorphism of milk proteins, in Advanced Dairy Chemistry 1: proteins, 3rd edn., P.F Fox and P.L.H. McSweeney, eds., Kluwer Acedemic/Plenum Publishers, New York. pp. 739-816.

    Google Scholar 

  • Ng-Kwai-Hang, K.F., Hayes, J.F., Moxley, J.E. and Monardes, H.G. (1984). Association of genetic variants of casein and milk serum proteins with milk, fat, and protein production by dairy cattle. J. Dairy Sci. 67, 835–840.

    Google Scholar 

  • Niki, V.R., Takase, K. and Arima, S. (1977). Über die gestalt and gröβe des temperaturabhängigen assoziats von β-casein. Milchwissenschaft 32, 577–582.

    Google Scholar 

  • Noelken, M. and Reibstein, M. (1968). The conformation of β-casein B. Arch. Biochem. Biophys. 123, 397.

    Google Scholar 

  • O’Connell, J.E., Grinberg, V.Ya. and De Kruif, C.G. (2003). Association behavior of β-casein. J. Colloid Interf. Sci. 258, 33–39.

    Google Scholar 

  • Ono, T., Kaminogawa, S., Odagiri, S. and Yamauchi, K. (1976). A study on the binding of calcium ions to αs1-casein. Agric. Biol. Chem. 40, 1717–1723.

    Google Scholar 

  • Ono, T., Yahagi, M. and Odagiri, S. (1980). The binding of calcium to κ-casein and para-κ-casein. Agric. Biol. Chem. 44, 1499–1503.

    Google Scholar 

  • Ono T., Yada, R., Yunati, K. and Nakai, S. (1987). Comparison of the comformations of κ-casein, para-κ-casein and glycomacropeptide. Biochim. Biophys. Acta. 911, 318–325.

    Google Scholar 

  • Osta, R., Marcos, S. and Rodellar, C. (1995). A MnlI polymorphism at the bovine αs2-casein gene. Anim. Genet. 26, 213.

    Google Scholar 

  • Parker, T.G. and Dalgleish, D.G. (1981). Binding of calcium ions to bovine β-casein. J. Dairy Res. 48, 71–76.

    Google Scholar 

  • Parry, R.M. and Carroll, R.J. (1969). Location of κ-casein in milk micelles. Biochim. Biophys. Acta 194, 138–150.

    Google Scholar 

  • Payens, T.A.J. and Heremans, K. (1969). Effect of pressure on the temperature-dependent association of β-casein. Biopolymers 8, 335–345.

    Google Scholar 

  • Payens, T.A.J. and Schmidt, P.G. (1965). The thermodynamic parameters of the association of αs1-casein C. Biochim. Biophys. Acta 109, 214–222.

    Google Scholar 

  • Payens, T.A.J. and Schmidt, D.G. (1966). Boundary spreading of rapidly polymerizing αs1-casein B and C during sedimentation. Arch. Biochem. Biophys. 115, 136–145.

    Google Scholar 

  • Payens, T.A.J. and Van Markwijk, B.W. (1963). Some features of the association of β-casein. Biochim. Biophys. Acta 71, 517–530.

    Google Scholar 

  • Payens, T.A.J., Brinkhuis, J.A. and Van Markwijk, B.W. (1969). Self-association in non-ideal systems. Combined light scattering and sedimentation measurements in β-casein solutions. Biochim. Biophys. Acta 175, 434–437.

    Google Scholar 

  • Pepper, L. and Farrell, H.M. Jr. (1982). Interactions leading to formation of casein submicelles. J. Dairy Sci. 65, 2259–2266.

    Google Scholar 

  • Pisano, A., Packer, N.H., Redmond, J.W., Williams, K.L. and Gooley, A.A. (1994). Characterization of O-linked glycosylation motifs in the glycopeptides domain of bovine k-casein. Glycobiology 4, 837–844.

    Google Scholar 

  • Prinzenberg, E.-M., Hiendleder, S., Ikonen, T. and Erhardt, G. (1996). Molecular genetic characterization of new bovine κ-casein alleles CSN3-F and CSN3-G and genotyping by PCR-RFLP. Anim. Genet. 27, 347–349.

    Google Scholar 

  • Prinzenberg, E.-M., Krause, I. and Erhardt, G. (1999). SCCP analysis of the bovine CSN3 locus discriminates six alleles corresponding to known protein variants (A, B, C, E, F, G) and three new DNA polymorphism (H, I, A1). Anim. Biotechnol. 10, 49–62.

    Google Scholar 

  • Qi, P.X., Wickham, E.D. and Farrell, H.M. Jr. (2004). Thermal and alkaline denaturation of bovine β-casein. Prot. J. 23, 389–402.

    Google Scholar 

  • Qi, P.X., Wickham, E.D., Piotrowski, E.G., Fagerquist, C.K. and Farrell, H.M. Jr. (2005). Implication of C-terminal deletion on the structure and stability of bovine β-casein. Prot. J. 24, 431–444.

    Google Scholar 

  • Raap, J., Kerling, K.E.T., Vreeman, H.J. and Visser, S. (1983). Peptide substrates for chymosin (rennin): conformational studies of κ-casein-related oligopeptides by circular dichroism and secondary structure prediction. Arch. Biochem. Biophys. 221, 117–124.

    Google Scholar 

  • Rasmussen, L.K., Hojrup, P. and Petersen, T.E. (1992). Localization of two interchain disulfide bridges in dimers of bovine αS2-casein. Eur. J. Biochem. 203, 381–386.

    Google Scholar 

  • Rasmussen, L.K., Hojrup, P. and Petersen, T.E. (1994). Disulphide arrangement in bovine caseins: localization of intrachain disulphide bridges in monomers of κ- and αs2-casein from bovine milk. J. Dairy Res. 61, 485–493.

    Google Scholar 

  • Ribadeau-Dumas, B., Grosclaude, F. and Mercier, J.-C. (1970). Localization in the peptide chain of bovine beta casein of the His-Gln substitution differentiating the A2 and A3 genetic variants. CR Acad. Sci. D: Sci. Natur. 270, 2369–2372.

    Google Scholar 

  • Ribadeau-Dumas, B., Brignon, G., Grosclaude, F. and Mercier, J.-C. (1972). Structure primaire de la casein β bovine. Eur. J. Biochem. 25, 505–514

    Google Scholar 

  • Rollema, H.S., Brinkhuis, J.A. and Vreeman, H.J. (1988) 1H-NMR studies of bovine kappa-casein and casein micelles. Neth. Milk Dairy J. 42, 233–248.

    Google Scholar 

  • Saito, T. and Itoh, T. (1992). Variations and distributions of O-glycosidically linked sugar chains in bovine κ-casein. J. Dairy Sci. 75, 1768–1774.

    Google Scholar 

  • Sawyer, L. and Holt, C. (1993). The secondary structure of milk proteins and their biological function. J. Dairy Sci. 76, 3062–3078.

    Google Scholar 

  • Schmidt, D.G. (1969). On the Association of α s1 -Casein, Ph.D. Thesis, University of Utrecht.

    Google Scholar 

  • Schmidt, D.G. (1970a). Differences between the association of the genetic variants B, C and D of αs1-casein. Biochim. Biophys. Acta 221, 140–142.

    Google Scholar 

  • Schmidt, D.G. (1970b). The association of αs1-casein B at pH 6.6. Biochim. Biophys. Acta 207,130–138.

    Google Scholar 

  • Schmidt, D.G. (1982). Association of caseins and casein micelle structure, in, Developments in Dairy Chemistry 1, P.F. Fox, ed., Elsevier Applied Science, London. pp. 61–86.

    Google Scholar 

  • Schmidt, D.G. and Payens, T.A.J. (1972). The evaluation of positive and negative contributions to the second virial coefficient of some milk proteins. J. Coll. Interface Sci. 39, 655–662.

    Google Scholar 

  • Schmidt, D.G. and Van Markwijk, B.W. (1968). Further studies on the associating subunit of αs1-casein. Biochim. Biophys. Acta 154, 613–614.

    Google Scholar 

  • Senocq, D., Molle, D., Pochet, S., Leonil, J., Dupont, D. and Levieux, D. (2002). A new bovine β-casein genetic variant characterized by a Met93→Leu93 substitution in the sequence A2. Lait 82, 171–180.

    Google Scholar 

  • Smyth, E., Syme, C.D., Blanch, E.W., Hecht, L., Vasak, M. and Barron, L.D. (2001). Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 58, 138–151.

    Google Scholar 

  • Snoeren, T.H.M., Van Markwijk, B. and Van Montfort, R. (1980). Some physicochemical properties of bovine αs2-casein. Biochim. Biophys. Acta 622, 266–276.

    Google Scholar 

  • Stewart, A.F., Bonsing, J., Beattie, C.W., Shah, F., Willis, I.M. and Mackinlay, A.G. (1987). Complete nucleotide sequences of bovine αs2- and β-casein cDNAs: comparisons with related sequences in other species. Mol. Biol. Evol. 4, 231–241.

    Google Scholar 

  • Sulimova, G.E., Sokolova, S.S., Semikozova, O.P., Nguet, L.M. and Berberov, E.M. (1992). Analysis of DNA polymorphisms of clustered genes in cattle: casein genes and genes of the major histocompatibility complex (BOLA). Tsitol. I Genetika 26, 18–26.

    Google Scholar 

  • Swaisgood, H. E. (1982). Chemistry of milk proteins, in, Developments in Dairy Chemistry 1: Proteins. P.F. Fox, ed., Applied Science Publishers, New York. pp. 1–59.

    Google Scholar 

  • Swaisgood, H.E. (1992). Chemistry of the caseins, in, Advanced Dairy Chemistry 1: Proteins, 2nd edn. P.F. Fox, ed., Elsevier Applied Science, New York. pp. 63–110.

    Google Scholar 

  • Swaisgood, H.E. (2003). Chemistry of caseins, in, Advanced Dairy Chemistry 1: Proteins, 3rd edn. P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York. pp. 139–201.

    Google Scholar 

  • Swaisgood, H.E. and Timasheff, S.N. (1968). Association of αs1-casein C in the alkaline pH range. Arch. Biochem. Biophys. 125, 344–361.

    Google Scholar 

  • Swaisgood, H.E., Brunner, J.R. and Lillevik, H.A. (1964). Physical parameters of κ-casein from cow’s milk. Biochem. 3, 1616–23.

    Google Scholar 

  • Syme, C.D., Blanch, E.W., Holt, C., Jakes, R., Goedert, M., Hecht, L. and Barron, L.D. (2002). A Raman optical activity study of rheomorphism in casein, synucleins and tau. New insight into the structure and behavior of natively unfolded proteins. Eur. J. Biochem. 269, 148–156.

    Google Scholar 

  • Tai, M.-S. and Kegeles, G. (1984). A micelle model for the sedimentation behavior of bovine β-casein. Biophys. Chem. 20, 81–87.

    Google Scholar 

  • Takase, K., Niki, R. and Arima, S. (1980). A sedimentation equilibrium study of the temperature-dependent association of bovine β-casein. Biochim. Biophys. Acta 622, 1–8.

    Google Scholar 

  • Talbo, G.H., Suckau, D., Malkoski, M. and Reynolds, E.C. (2001). MALDI-PSD-MS analysis of the phosphorylation sites of caseinomacropeptide. Peptides 22, 1093–1098.

    Google Scholar 

  • Talbot, B. and Waugh, D.F. (1970). Micelle-forming characteristics of monomeric and covalent polymeric κ-caseins. Biochem. 9, 2807–2813.

    Google Scholar 

  • Tanford C. (1962). Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Am. Chem. Soc. 84, 4240–4274.

    Google Scholar 

  • Tauzin, J., Miclo, L., Roth, S., Molle, D. and Gaillard, J.-L. (2003). Tryptic hydrolysis of bovine αs2-casein: identification and release kinetics of peptides. Int. Dairy J. 13, 15–27.

    Google Scholar 

  • Thompson, M.P. and Farrell, H.M. Jr. (1974). Genetic variants of the milk proteins, in, Lactation, Vol. III, B.L. Larson and V.R. Smith, eds., Academic, New York. pp. 109–134.

    Google Scholar 

  • Thompson, M.P., Kalan, E.B. and Greenberg, R. (1967). Properties of caseins modified by treatment with carboxypeptidase A. J. Dairy Sci. 50,767–769.

    Google Scholar 

  • Thorn, D.C., Meehan, S., Sunde, M., Rekas, A., Gras, S.L., MacPhee, C.E., Dobson, C.M., Wilson, M.R. and Carver, J.A. (2005). Amyloid fibril formation by bovine milk κ-casein and its inhibition by the ­molecular chaperones αs- and β-casein. Biochem 44, 17027–17036.

    Google Scholar 

  • Thorn, D.C., Ecroyd, H., Sunde, M., Poon, S. and Carver, J.A. (2008). Amyloid fibril formation by bovine milk αs2-casein occurs under physiological conditions yet is prevented by its natural counterpart, αs1-casein. Biochem. 47, 3926–3936.

    Google Scholar 

  • Thurn, A., Burchard, W. and Niki, R. (1987). Structure of casein micelles. I. Small angle neutron scattering and light scattering from β-casein and κ-casein. Colloid Polymer Sci. 265, 653–666.

    Google Scholar 

  • Toma, S.J. and Nakai, S. (1973). Calcium sensitivity and molecular-weight of casein-αs5. J. Dairy Sci. 56, 1559–1562.

    Google Scholar 

  • Trieu-Cuot, P. and Gripon J.-C. (1981). Electrofocusing and two-dimensional electrophoresis of bovine caseins. J. Dairy Res. 48, 303–310.

    Google Scholar 

  • Visser, S., Slangen, C.J., Lagerwerf, F.M., Van Dongen, W.S. and Haverkamp, J. (1995). Identification of a new variant of bovine beta-casein using reversed-phase high-performance liquid-chromatography and mass-spectrometric analysis. J. Chrom. A 711, 141–150.

    Google Scholar 

  • Vreeman, H.J. (1979). The association of bovine SH-κ-casein at pH 7.0. J. Dairy Res. 46, 271–276.

    Google Scholar 

  • Vreeman, H.J., Both, P., Brinkhuis, J.A. and Van der Spek, C. (1977). Purification and some physicochemical properties of bovine κ-casein. Biochim. Biophys. Acta 491, 93–103.

    Google Scholar 

  • Vreeman, H.J., Brinkhuis, J.A. and Van der Spek, C. (1981). Some association properties of bovine SH-κ-casein. Biophys. Chem. 14, 185–193.

    Google Scholar 

  • Vreeman, H.J., Visser, S., Slangen, C.J. and Van Riel, J.A.M. (1986). Characterization of bovine κ-casein fraction and the kinetics of chymosin-induced macropeptide release from carbohydrate-free and carbohydrate-containing fractions determined by high-performance gel-permeation chromatography. Biochem. J. 240, 87–97.

    Google Scholar 

  • Whitney, R.M., Brunner, J.R., Ebner, K.E., Farrell, H.M. Jr., Josephson, R.V., Morr, C.V. and Swaisgood, H.E. (1976). Nomenclature of the proteins of cow’s milk: fourth revision. J. Dairy Sci. 59, 795–815.

    Google Scholar 

  • Yamuachi, K., Takemoto, S. and Tsugo, T. (1967). Calcium-binding property of dephosphorylated casein. Agric. Biol. Chem. 31, 54–63.

    Google Scholar 

  • Yan, S.-C.B. and Wold, F. (1984). Neoglycoproteins: in vitro introduction of glycosyl units at glutamines in β-casein using transglutaminase. Biochem. 23, 3759–3765.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Huppertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huppertz, T. (2013). Chemistry of the Caseins. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_4

Download citation

Publish with us

Policies and ethics