Skip to main content

Role of P-Glycoprotein at the Blood-Testis Barrier on Adjudin Distribution in the Testis

A Revisit of Recent Data

  • Chapter
  • First Online:
Biology and Regulation of Blood-Tissue Barriers

Abstract

The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in mammals including rodents and humans. It is used to sequester meiosis I and II, postmeiotic spermatid development via spermiogenesis and the release of sperm at spermiation from the systemic circulation, such that these events take place in an immune-privileged site in the adluminal (apical) compartment behind the BTB, segregated from the host immune system. Additionally, drug transporters, namely efflux (e.g., P-glycoprotein) and influx (e.g., Oatp3) pumps, many of which are integral membrane proteins in Sertoli cells at the BTB also work cooperatively to restrict the entry of drugs, toxicants, chemicals, steroids and other xenobiotics into the adluminal compartment. As such, the BTB that serves as an important physiological and selective barrier to protect germ cell development also poses a “hurdle” in male contraceptive development. For instance, adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide, a potential nonhormonal male contraceptive that exerts its effects on germ cell adhesion, most notably at the Sertoli cell-spermatid interface, to induce “premature” germ cell loss from the seminiferous epithelium mimicking spermiation, has a relatively poor bioavailability largely because of the BTB. Since male contraceptives (e.g., adjudin) will be used by healthy men for an extended period of his life span after puberty, a better understanding on the BTB is necessary in order to effectively deliver drugs across this blood-tissue barrier in particular if these compounds exert their effects on developing germ cells in the adluminal compartment. This can also reduce long-term toxicity and health risk if the effective dosing can be lowered in order to widen the margin between its safety and efficacy. Herein, we summarize latest findings in this area of research, we also provide a critical evaluation on research areas that deserve attention in future studies.

These authors contribute equally to the completion of this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng CY, Mruk DD. The blood-testis barrier and its implication in male contraception. Pharmacol Rev 2012; 64, A–AW.

    Article  Google Scholar 

  2. Pelletier RM. The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem 2011; 46:49–127.

    Article  PubMed  Google Scholar 

  3. Mital P, Hinton BT, Dufour JM. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol Reprod 2011; 84:851–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Franca LR, Auharek SA, Hess RA et al. Morphofunctional and immunological aspects of the blood-testis and blood-epididymal barriers. In: Biology and Regulation of Blood-Tissue Barriers. Ed. Cheng C. Y. Austin, TX, Landes Bioscience and Springer Science + Business Media, LLC. http://www.landesbioscience. com/curie/chapter/5148/2011.

    Google Scholar 

  5. Easton AS. Regulation of permeability across the blood-brain barrier. In: Biology and Regulation of Blood-Tissue Barriers. Ed. Cheng CY. Austin TX, Landes Bioscience and Springer Science Business Media, LLC. (in press) 2011.

    Google Scholar 

  6. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173–185.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng CY, Mruk DD. A local autocrine axis in the testes that regulates spermatogenesis. Nature Rev Endocrinol 2010; 6:380–395.

    Article  CAS  Google Scholar 

  8. Mruk DD, Cheng CY. Delivering nonhormonal contraceptives to men: advances and obstacles. Trends Biotechnol 2008;26: 90–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Setchell BP. Blood-testis barrier, functional and transport proteins and spermatogenesis. Adv Exp Med Biol 2008; 636: 212–233.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng CY et al. AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: A review of recent data. Contraception 2005;72:251–261.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng CY et al. Two new male contraceptives exert their effects by depleting germ cells prematurely from the testis. Biol Reprod 2001; 65:449–461.

    Article  CAS  PubMed  Google Scholar 

  12. Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: Role in contraceptive development. Pharmacol Rev 2008; 60:146–180.

    Article  CAS  PubMed  Google Scholar 

  13. Su L, Mruk DD, Cheng CY. Drug transporters, the blood-testis barrier and spermatogenesis. J Endocrinol 2011; 208:207–223.

    CAS  PubMed  Google Scholar 

  14. Kis O, Robillard K, Chan GN et al. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci 2010; 31:22–35.

    Article  CAS  PubMed  Google Scholar 

  15. DeGorter MK, Xia CQ, Yang JJ et al. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxciol (in press; DOI:10.1146/annurev-pharmtox-010611-134529) 2012.

    Article  CAS  PubMed  Google Scholar 

  16. Mandery K, Glaeser H, Fromm M. Interaction of innovative small molecule drugs used for cancer theraphy with drug transporters. Br J Pharmacol (in press, doi:10.1111/j.1476-5381.2011.01618.x) 2011.

    Article  Google Scholar 

  17. Mruk DD, Su L, Cheng CY. Emerging role for drug transporters at the blood-testis barrier. Trends Pharmacol Sci 2011; 32:99–106.

    Article  CAS  PubMed  Google Scholar 

  18. Su L, Cheng CY, Mruk DD. Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier. Int J Biochem Cell Biol 2009; 41:2578–2587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Su L, Mruk DD, Lui WY et al. P-glycoprotein regulates blood-testis barrier dynamics via its effects on the occludin/zonula occludens 1 (ZO-1) protein complex mediated by focal adhesion kinase (FAK). Proc Natl Acad Sci USA 2011; In press: DOI:10.1073/pnas.1111414108

    Article  CAS  Google Scholar 

  20. Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: Roles in cell growth, death and cancer. Pharmacol Rev 2008; 60:261–310.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng CY, Mruk DD. Regulation of blood-testis barrier dynamics by focal adhesion kinase (FAK). An unexpected turn of events. Cell Cycle 2009; 8:3493–3499.

    Article  CAS  PubMed  Google Scholar 

  22. Belvitch P, Dudek SM. Role of FAK in S1P-regulated endothelial permeability. Microvasc Res (in press; doi:10.1016/j.mvr.2011.08.012) 2011.

    Article  CAS  PubMed  Google Scholar 

  23. Siu ER et al. An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model. Endocrinology 2009; 150:3336–3344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siu ER, Wong EWP, Mruk DD et al. Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci USA 2009; 106:9298–9303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siu MKY, Wong CH, Lee WM et al. Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases. J Biol Chem 2005; 280:25029–25047.

    Article  CAS  PubMed  Google Scholar 

  26. Lee NPY, Cheng CY. Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3’,5’-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology 2003; 144:3114–3129.

    Article  CAS  PubMed  Google Scholar 

  27. Melaine N et al. Multidrug resistance genes and P-glycoprotein in the testis of the rat, mouse, guinea pig and human. Biol Reprod 2002; 67:1699–1707.

    Article  CAS  PubMed  Google Scholar 

  28. Bart J et al. The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. Eur J Cancer 2004; 40:2064–2070.

    Article  CAS  PubMed  Google Scholar 

  29. Su L, Mruk DD, Lee WM et al. Drug transporters and blood-testis barrier function. J Endocrinol 2011; 209:337–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altschul SF et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 1997; 25:3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berman HM et al. The Protein Data Bank. Nucleic Acid Res 2000; 28:235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laskowski RA, Rullmann JAC, MacArthur MW et al. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996; 8:477–486.

    Article  CAS  PubMed  Google Scholar 

  33. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993; 2:1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aller SG et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009; 323:1718–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laskowski RA. PDBsum new things. Nucleic Acid Res 2009; 37:D355–D359.

    Article  CAS  PubMed  Google Scholar 

  36. Globisch C, Pajeva IK, Wiese M. Identification of putative binding sites of P-glycoprotein based on its homology model. ChemMedChem 2008: 3:280–295.

    Article  CAS  PubMed  Google Scholar 

  37. Dawson RJ, Locher KP. Structure of the multidrug ABC tarnsporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 2007; 581:935–938.

    Article  CAS  PubMed  Google Scholar 

  38. Pohl A, Devaux PF, Herrmann A. Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim Biophys Acta 2005; 1733:29–52.

    Article  CAS  PubMed  Google Scholar 

  39. Shapiro AB, Ling V. Extraction of Hoechst 33342 and the cytoplasmic leaflet of the plasma membrane by P-glycoprotein. Eur J Biochem 1997; 250:122–129.

    Article  CAS  PubMed  Google Scholar 

  40. Robillard KR, Hoque MdT, Bendayan R. Expression of ATP binding cassette membrane transporters in rodent and human Sertoli cells: Relevance to the permeability of antiretroviral therapy at the blood-testis barrier. J Pharmacol Exp Ther 2011; In press: DOI:10.1124/jpet.111.186916

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Su, L. et al. (2013). Role of P-Glycoprotein at the Blood-Testis Barrier on Adjudin Distribution in the Testis. In: Cheng, C.Y. (eds) Biology and Regulation of Blood-Tissue Barriers. Advances in Experimental Medicine and Biology, vol 763. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4711-5_16

Download citation

Publish with us

Policies and ethics