Skip to main content

HDAC Inhibitors and Other Histone Modifying Natural Products as Emerging Anticancer Agents

  • Chapter
  • First Online:
Natural Products and Cancer Drug Discovery

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Histone deacetylase (HDAC) inhibitors represent a new class of anticancer agents that target dysregulated acetylation of histone lysines, an epigenetic rather than a genetic event. Certain HDACs are overexpressed and hyperactive in cancer cells, and suppression of these enzymes’ activities provides superior selectivity over more traditional anticancer agents. To date, two HDAC inhibitors—vorinostat and romidepsin—have reached the market, with romidepsin being an actual natural product and vorinostat closely related to the natural product HDAC inhibitor trichostatin A. Over the past 15 years, several secondary metabolites with high structural diversity from microorganisms, marine sponges, and cyanobacteria have been discovered to possess HDAC inhibitory activity and are currently at the clinical and preclinical stages. In this chapter, we recapitulate the discovery of natural product HDAC inhibitors, enumerate the challenges in their development and provide insights in the continuing role of natural products in the discovery of HDAC inhibitors as well as new modulators for other clinically-relevant epigenetic events, including histone methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Harpel JG, Metz CN, Nunes I, Loskutoff DJ, Rikfin DB (1994) An assay for transforming growth factor-beta using cells transfected with plasminogen activator inhibitor-1 promoter-luciferase construct. Anal Biochem 216:276–284

    Article  PubMed  CAS  Google Scholar 

  • Altman SA, Randers L, Rao G (1999) Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations. Biotechnol Prog 9:871–874

    Google Scholar 

  • Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22:7468–7485

    Article  PubMed  CAS  Google Scholar 

  • Anand R, Marmorstein R (2007) Structure and mechanism of lysine-specific demethylase enzymes. J Biol Chem 282:35425–35429

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi S, Archer TK (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15:565–567

    Article  PubMed  CAS  Google Scholar 

  • Arif M, Pradhan SK, Thanuja GK et al (2009) Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 52:267–277

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ (2008) A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22:1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanyam K, Altaf M, Varier RA et al (2004) Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279:33716–33726

    Article  PubMed  CAS  Google Scholar 

  • Balcerczyk A, Pirola L (2010) Therapeutic potential of activators and inhibitors of sirtuins. Biofactors 36:383–393

    Article  PubMed  CAS  Google Scholar 

  • Barlev NA, Liu L, Chehab NH et al (2001) Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8:1243–1254

    Article  PubMed  CAS  Google Scholar 

  • Bartz SR, Zhang Z, Burchard J et al (2006) Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26:9377–9386

    Article  PubMed  CAS  Google Scholar 

  • Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  • Beher D, Wu J, Cumine S et al (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74:619–624

    Article  PubMed  CAS  Google Scholar 

  • Berndsen CE, Albaugh BN, Tan S, Denu JM (2007) Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry 46:623–629

    Article  PubMed  CAS  Google Scholar 

  • Bolden J, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  PubMed  CAS  Google Scholar 

  • Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280:17187–17195

    Article  PubMed  CAS  Google Scholar 

  • Bottomley MJ, Lo Surdo P, Di Giovine P et al (2008) Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem 283:26694–26704

    Article  PubMed  CAS  Google Scholar 

  • Bowers AA, Greshock TJ, West N et al (2009) Synthesis and conformation-activity relationships of the peptide isosteres of FK228 and largazole. J Am Chem Soc 131:2900–2905

    Article  PubMed  CAS  Google Scholar 

  • Breslow R, Jursic B, Yan ZF et al (1991) Potent cytodifferentiating agents related to hexamethylenebisacetamide. Proc Natl Acad Sci U S A 88:5542–5546

    Article  PubMed  CAS  Google Scholar 

  • Bressi JC, Jennings AJ, Skene R et al (2010) Exploration of the HDAC2 foot pocket: synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg Med Chem Lett 20:3142–3145

    Article  PubMed  CAS  Google Scholar 

  • Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Gambs C, Abe Y, Wentworth PJ, Janda KD (2003) Total synthesis of the depsipeptide FR-901375. J Org Chem 68:8902–8905

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Williams SA, Mu Y et al (2005) NF-κB RelA phosphorylation regulates RelA acetylation. Mol Cell Biol 25:7966–7975

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16:341–350

    Article  PubMed  CAS  Google Scholar 

  • Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–843

    Article  PubMed  CAS  Google Scholar 

  • Clark GJ, Cox A, Graham SM, Der CJ (1995) Biological assays for Ras transformation. In: Balch WE, Der CJ, Hall A (eds) Methods in enzymology. Academic, New York

    Google Scholar 

  • Closse A, Huguenin R (1974) Isolierung und Strukturaufklärung von Chlamydocin. Helv Chim Acta 57:533–544

    Article  PubMed  CAS  Google Scholar 

  • Cole KE, Dowling DP, Boone MA, Phillips AJ, Christianson DW (2011) Structural basis of the antiproliferative activity of largazole, a depsipeptide inhibitor of the histone deacetylases. J Am Chem Soc 133:12474–12477

    Article  PubMed  CAS  Google Scholar 

  • Culhane JC, Cole PA (2007) LSD1 and the chemistry of histone demethylation. Curr Opin Chem Biol 11:561–568

    Article  PubMed  CAS  Google Scholar 

  • Dal Piaz F, Tosco A, Eletto D et al (2010) The identification of a novel natural activator of p300 histone acetyltransferase provides new insights into the modulation mechanism of this enzyme. ChemBioChem 11:818–827

    Article  PubMed  CAS  Google Scholar 

  • De Ruijter AJM, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg ABP (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  Google Scholar 

  • Dedesa KJ, Dedesa I, Imescha P, von Buerenb AO, Finka D, Fediera A (2009) Acquired vorinostat resistance shows partial cross-resistance to ‘second-generation’ HDAC inhibitors and correlates with loss of histone acetylation and apoptosis but not with altered HDAC and HAT activities. Anticancer Drugs 20:321–333

    Article  CAS  Google Scholar 

  • Deng W, Wu KK (2003) Regulation of inducible nitric oxide synthase expression by p300 and p50 acetylation. J Immunol 171:6581–6588

    PubMed  CAS  Google Scholar 

  • Deng W, Zhu Y, Wu KK (2003) Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-a-induced cyclooxygenase-2 promoter activation. J Biol Chem 278:4770–4777

    Article  PubMed  CAS  Google Scholar 

  • Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585:2024–2031

    Article  PubMed  CAS  Google Scholar 

  • Di Micco S, Terracciano S, Bruno I et al (2008) Molecular modeling studies toward the structural optimization of new cyclopeptide-based HDAC inhibitors modeled on the natural product FR235222. Bioorg Med Chem 16:8635–8642

    Article  PubMed  CAS  Google Scholar 

  • Dittenhafer-Reed KE, Feldman JL, Denu JM (2011) Catalysis and mechanistic insights into sirtuin activation. ChemBioChem 12:281–289

    Article  PubMed  CAS  Google Scholar 

  • Elaut G, Torok G, Vinken M et al (2002) Major phase I biotransformation pathways of trichostatin A in rat hepatocytes and in rat and human liver microsomes. Drug Metab Dispos 30:1320–1328

    Article  PubMed  CAS  Google Scholar 

  • Fantin VR, Loboda A, Paweletz CP et al (2008) Constitutive activation of signal transducers and activators of transcription predicts Vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res 68:3785–3794

    Article  PubMed  CAS  Google Scholar 

  • Fedier A, Dedes KJ, Imesch P, Von Bueren AO, Fink D (2007) The histone deacetylase inhibitors suberoylanilide hydroxamic (Vorinostat) and valproic acid induce irreversible and MDR1-independent resistance in human colon cancer cells. Int J Oncol 31:633–641

    PubMed  CAS  Google Scholar 

  • Ficner R (2009) Novel structural insights into Class I and II histone deacetylases. Curr Top Med Chem 9:235–240

    Article  PubMed  CAS  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A et al (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193

    Article  PubMed  CAS  Google Scholar 

  • Frew AJ, Lindemann RK, Martin BP et al (2008) Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc Natl Acad Sci U S A 105:11317–11322

    Article  PubMed  CAS  Google Scholar 

  • Fry DG, Hurlin PJ, Maher VM, McCormick JJ (1988) Transformation of diploid human fibroblasts by transfection with the v-sis, PDGF2/c-sis, or T24 H-ras genes. Mutat Res 199:341–351

    Article  PubMed  CAS  Google Scholar 

  • Furumai R, Matsuyama A, Kobashi N et al (2002) FK228 (Depsipeptide) as a natural prodrug that inhibits Class I histone deacetylases. Cancer Res 62:4916–4921

    PubMed  CAS  Google Scholar 

  • George P, Bali P, Annavarapu S et al (2005) Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 105:1768–1776

    Article  PubMed  CAS  Google Scholar 

  • Gey C, Kyrylenko S, Hennig L et al (2007) Phloroglucinol derivatives guttiferone G, aristoforin, and hyperforin: inhibitors of human sirtuins SIRT1 and SIRT2. Angew Chem Int Ed 46:5219–5222

    Article  CAS  Google Scholar 

  • Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2:151–163

    Article  PubMed  CAS  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    Article  PubMed  CAS  Google Scholar 

  • Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  PubMed  CAS  Google Scholar 

  • Gregoretti IV, Lee Y, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17–31

    Article  PubMed  CAS  Google Scholar 

  • Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1:143–145

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Cueto M, Jensen PR, Fenical W, Silverman RB (2007) Microsporins A and B: new histone deacetylase inhibitors from the marine-derived fungus Microsporum cf. gypseum and the solid-phase synthesis of microsporin A. Tetrahedron 63:6535–6541

    Article  CAS  Google Scholar 

  • Gutierrez M, Andrianasolo EH, Shin WK et al (2009) Structural and synthetic investigations of tanikolide dimer, a SIRT2 selective inhibitor, and tanikolide seco-acid from the Madagascar marine cyanobacterium Lyngbya majuscula. J Org Chem 74:5267–5275

    Article  PubMed  CAS  Google Scholar 

  • Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100:4389–4394

    Article  PubMed  CAS  Google Scholar 

  • Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59:177–189

    Article  PubMed  CAS  Google Scholar 

  • Hanigan CL, Van Engeland M, De Bruine AP et al (2008) An inactivating mutation in HDAC2 leads to dysregulation of apoptosis mediated by APAF1. Gastroenterology 135:1654–1664

    Article  PubMed  CAS  Google Scholar 

  • Hauser D, Weber HP, Sigg HP (1970) Isolation and structure elucidation of chaetocin. Helv Chim Acta 53:1061–1073

    Article  PubMed  CAS  Google Scholar 

  • Hirota A, Suzuki A, Suzuki H, Tamura S (1973) Isolation and biological activity of Cyl-2, a metabolite of Cylindrocladium scoparium. Agric Biol Chem 37:643–647

    Article  CAS  Google Scholar 

  • Hodawadekar SC, Marmorstein R (2007) Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26:5528–5540

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Luesch H (2012) Largazole: From discovery to broad-spectrum therapy. Nat Prod Rep 29: 449–456

    Article  PubMed  CAS  Google Scholar 

  • Hoshino I, Hisahiro M, Akutsu Y et al (2007) Gene expression profiling induced by histone deacetylase inhibitor, FK228, in human esophageal squamous cancer cells. Oncol Rep 18:585–592

    PubMed  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  • Hubbert C, Guardiola A, Shao R et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  PubMed  CAS  Google Scholar 

  • Isham CR, Tibodeau JD, Jin W, Xu R, Timm MM, Bible KC (2007) Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 109:2579–2588

    Article  PubMed  CAS  Google Scholar 

  • Itazaki H, Nagashima K, Sugita K et al (1990) Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J Antibiot 43:1524–1532

    Article  PubMed  CAS  Google Scholar 

  • Iwasa E, Hamashima Y, Fujishiro S et al (2010) Total synthesis of (+)-chaetocin and its analogues: their histone methyltransferase G9a inhibitory activity. J Am Chem Soc 132:4078–4079

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesh S, Sinha S, Pal BC, Bhattacharya S, Banerjee PP (2007) Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochem Biophys Res Commun 362:212–217

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  • Joubel A, Chalkley RJ, Medzihradszky KF, Hondermarck H, Burlingame AL (2009) Identification of new p53 acetylation sites in COS-1 cells. Mol Cell Proteomics 8:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Structure and function of mammalian DNA methyltransferases. ChemBioChem 12:206–222

    Article  PubMed  CAS  Google Scholar 

  • Kano Y, Akutsu M, Tsunoda S et al (2006) Cytotoxic effects of histone deacetylase inhibitor FK228 (depsipeptide, formally named FR901228) in combination with conventional anti-leukemia/lymphoma agents against human leukemia/lymphoma cell lines. Invest New Drugs 25:31–40

    Article  CAS  Google Scholar 

  • Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao T (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  PubMed  CAS  Google Scholar 

  • Kiernan R, Bres V, Ng RWM et al (2003) Post-activation turn-off of NF-κB-dependent transcription is regulated by acetylation of p65. J Biol Chem 278:2758–2766

    Article  PubMed  CAS  Google Scholar 

  • Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268:22429–22435

    PubMed  CAS  Google Scholar 

  • Kim DH, Shin J, Kwon HJ (2007) Psammaplin A is a natural prodrug that inhibits class I histone deacetylase. Exp Mol Med 39:47–55

    PubMed  CAS  Google Scholar 

  • Komatsu Y, Tomizaki K, Tsukamoto M et al (2001) Cyclic hydroxamic-acid-containing peptide 31, a potent synthetic histone deacetylase inhibitor with antitumor activity. Cancer Res 61:4459–4466

    PubMed  CAS  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Kuck D, Caulfield T, Lyko F, Medina-Franco JL (2010) Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol Cancer Ther 9:3015–3023

    Article  PubMed  CAS  Google Scholar 

  • Kwan JC, Luesch H (2010) Weapons in disguise—activating mechanisms and protecting group chemistry in Nature. Chem Eur J 16:13020–13029

    Article  PubMed  CAS  Google Scholar 

  • Kwon T, Chang JH, Kwak E et al (2003) Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J 22:292–303

    Article  PubMed  CAS  Google Scholar 

  • Ledizet M, Piperno G (1987) Identification of an acetylation site of Chlamydomonas α-tubulin. Proc Natl Acad Sci U S A 84:5720–5724

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Zhu BT (2006) Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 279:269–277

    Article  CAS  Google Scholar 

  • Lee WJ, Shim J, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142:682–685

    Article  PubMed  CAS  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  PubMed  CAS  Google Scholar 

  • Liang G, Lin JCY, Wei V et al (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101:7357–7362

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Fletcher CM, Zhou J, Allis CD, Wagner G (1999) Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A. Nature 400:86–89

    Article  PubMed  CAS  Google Scholar 

  • Lina R, Hsu C, Wang Y (2007) Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 18:1157–1164

    Article  CAS  Google Scholar 

  • Liu X, Wang L, Zhao K et al (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451:846–850

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Liu S, Xie Z et al (2009) Modulation of DNA methylation by a sesquiterpene lactone parthenolide. J Pharmacol Exp Ther 329:505–514

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Salvador LA, Byeon S et al (2010) Anticolon cancer activity of largazole, a marine-derived tunable histone deacetylase inhibitor. J Pharmacol Exp Ther 335:351–361

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  • Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    Article  PubMed  CAS  Google Scholar 

  • Maruta H, Greet K, Rosenbaum JL (1986) The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules. J Cell Biol 103:571–579

    Article  PubMed  CAS  Google Scholar 

  • Masuoka Y, Nagai A, Shin-ya K et al (2001) Spiruchostatins A and B, novel gene expression-enhancing substances produced by Pseudomonas sp. Tetrahedron Lett 42:41–44

    Article  CAS  Google Scholar 

  • Masuoka Y, Shindoh N, Inamura N (2008) Histone deacetylase inhibitors from microorganisms: the Astellas experience. In: Amstutz R, Petersen F (eds) Progress in drug research. Birkhauser Verlag, Basel

    Google Scholar 

  • Maulucci N, Chini MG, Di Micco S et al (2007) Molecular insights into azumamide E histone deacetylases inhibitory activity. J Am Chem Soc 129:3007–3012

    Article  PubMed  CAS  Google Scholar 

  • McCulloch MWB, Coombs GS, Banerjee N et al (2009) Psammaplin A as a general activator of cell-based signaling assays via HDAC inhibition and studies on some bromotyrosine derivatives. Bioorg Med Chem 17:2189–2198

    Article  PubMed  CAS  Google Scholar 

  • McPhail KL, France D, Cornell-Kennon S, Gerwick WH (2004) Peyssonenynes A and B, novel enediyne oxylipins with DNA methyltransferase inhibitory activity from the red marine alga Peyssonnelia caulifera. J Nat Prod 67:1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Min J, Feng Q, Li Z, Zhang Y, Xu R (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112:711–723

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Urano Y, Abe F et al (2003a) FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC). I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 56:72–79

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Abe F, Furukawa S et al (2003b) FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC). II. Biological activities in animal models. J Antibiot 56:80–86

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Urano Y, Kinoshita T, Yoshimura S, Takase S, Hino M (2003c) FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase. III. Structure determination. J Antibiot 56:181–185

    Article  PubMed  CAS  Google Scholar 

  • Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M, Oda Y, Eguchi T et al (2007) Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep 18:769–774

    PubMed  CAS  Google Scholar 

  • Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241:126–133

    Article  PubMed  CAS  Google Scholar 

  • Nakao Y, Yoshida S, Matsunaga S et al (2006) Azumamides A–E: histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge Mycale izuensis. Angew Chem Int Ed 45:7553–7557

    Article  CAS  Google Scholar 

  • Nawrocki ST, Carew JS, Pino MS et al (2006) Aggresome disruption: a novel strategy to enhance Bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66:3773–3781

    Article  PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat Prod 75:311–335

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Ueki M, Kakeya H, Osada H (2001) A facile and effective screening method for p21WAF1 promoter activators from microbial metabolites. J Antibiot 54:783–788

    Article  PubMed  CAS  Google Scholar 

  • Noh JH, Song JH, Eun JW et al (2009) Systemic cell-cycle suppression by apicidin, a histone deacetylase inhibitor, in MDA-MB-435 cells. Int J Mol Med 24:205–226

    PubMed  CAS  Google Scholar 

  • O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  • Oh WK, Cho KB, Hien TT et al (2010) Amurensin G, a potent natural SIRT1 inhibitor, rescues doxorubicin responsiveness via down-regulation of multidrug resistance. Mol Pharmacol 78:855–864

    Article  PubMed  CAS  Google Scholar 

  • Oliver SS, Denu JM (2011) Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a “histone language”. ChemBioChem 12:299–307

    Article  PubMed  CAS  Google Scholar 

  • Pacholec M, Bleasdale JE, Chrunyk B et al (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285:8340–8345

    Article  PubMed  CAS  Google Scholar 

  • Papazisis KT, Geromichalos GD, Dimitriadis KA, Kortsaris AH (1997) Optimization of the sulforhodamine B colorimetric assay. J Immunol Methods 208:151–158

    Article  PubMed  CAS  Google Scholar 

  • Pina IC, Gautschi JT, Wang G et al (2003) Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J Org Chem 68:3866–3873

    Article  PubMed  CAS  Google Scholar 

  • Piperno G, LeDizet M, Chang X (1987) Microtubules containing acetylated α-tubulin in mammalian cells in culture. J Cell Biol 104:289–302

    Article  PubMed  CAS  Google Scholar 

  • Quivy V, Van Lint C (2004) Regulation at multiple levels of NF-κB-mediated transactivation by protein acetylation. Biochem Pharmacol 68:1221–1229

    Article  PubMed  CAS  Google Scholar 

  • Rahmani M, Yu C, Dai Y et al (2003) Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res 63:8420–8427

    PubMed  CAS  Google Scholar 

  • Reuben RC, Wife RL, Breslow R, Rifkind RA, Marks PA (1976) A new group of potent inducers of differentiation in murine erythroleukemia cells. Proc Natl Acad Sci U S A 73:862–866

    Article  PubMed  CAS  Google Scholar 

  • Richon VM, Webb Y, Merger R et al (1996) Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci U S A 93:5705–5708

    Article  PubMed  CAS  Google Scholar 

  • Richon VM, Garcia-Vargas J, Hardwick JS (2009) Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 280:201–210

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Gonzalez A, Lin T, Ikeda AK, Simms-Waldrip T, Fu C, Sakamoto KM (2008) Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res 68:2557–2560

    Article  PubMed  CAS  Google Scholar 

  • Ropero S, Fraga MF, Ballestar E et al (2006) A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 38:566–569

    Article  PubMed  CAS  Google Scholar 

  • Ropero S, Ballestar E, Alaminos M, Arango D, Schwartz S Jr, Esteller M (2008) Transforming pathways unleashed by a HDAC2 mutation in human cancer. Oncogene 27:4008–4012

    Article  PubMed  CAS  Google Scholar 

  • Sanders BD, Jackson B, Marmorstein R (2010) Structural basis for sirtuin function: what we know and what we don’t. Biochim Biophys Acta 1804:1604–1616

    Article  PubMed  CAS  Google Scholar 

  • Sanderson L, Taylor GW, Aboagye EO et al (2004) Plasma pharmacokinetics and metabolism of the histone deacetylase inhibitor trichostatin A after intraperitoneal administration to mice. Drug Metab Dispos 32:1132–1138

    Article  PubMed  CAS  Google Scholar 

  • Schuetz A, Min J, Allali-Hassani A et al (2008) Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem 283:11355–11363

    Article  PubMed  CAS  Google Scholar 

  • Scroggins BT, Robzyk K, Wang D et al (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159

    Article  PubMed  CAS  Google Scholar 

  • Shah MH, Binkley P, Chan K et al (2006) Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res 12:3997–4003

    Article  PubMed  CAS  Google Scholar 

  • Shao W, Growney JD, Feng Y et al (2010) Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T-cell lymphoma models: defining molecular mechanisms of resistance. Int J Cancer 127:2199–2208

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  PubMed  CAS  Google Scholar 

  • Shigematsu N, Ueda H, Takase S, Tanaka H (1994) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J Antibiot 47:311–314

    Article  PubMed  CAS  Google Scholar 

  • Shimada J, Kwon HJ, Sawamura M, Schreiber S (1995) Synthesis and cellular characterization of the detransformation agent, (−)-depudecin. Chem Biol 2:517–525

    Article  PubMed  CAS  Google Scholar 

  • Singh SB, Zink DL, Polishook JD et al (1996) Apicidins: novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett 37:8077–8080

    Article  CAS  Google Scholar 

  • Singh SB, Zink DL, Liesch JM et al (2001) Structure, histone deacetylase, and antiprotozoal activities of apicidins B and C, congeners of apicidin with proline and valine substitutions. Org Lett 3:2815–2818

    Article  PubMed  CAS  Google Scholar 

  • Sippl W, Jung M (2009) DNA methyltransferase inhibitors. Methods Princ Med Chem 42:163–183

    CAS  Google Scholar 

  • Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789:45–57

    Article  PubMed  CAS  Google Scholar 

  • Somoza JR, Skene RJ, Katz BA et al (2004) Structural snapshots of human HDAC8 provide insights into the Class I histone deacetylases. Structure 12:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Song J, Noh JH, Lee JH et al (2005) Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113:264–268

    Article  PubMed  CAS  Google Scholar 

  • Spannhoff A, Hauser A, Heinke R, Sippl W, Jung M (2009) The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem 42:1568–1582

    Article  CAS  Google Scholar 

  • Stähelin H, Trippmacher A (1974) Cytostatic activity of chlamydocin, a rapidly inactivated cyclic tetrapeptide. Eur J Cancer 103:801–808

    Google Scholar 

  • Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol Appendix 3:A.3B.1–A.3B.2

    Google Scholar 

  • Tanaka M, Levy J, Terada M, Breslow R, Rifkind RA, Marks PA (1975) Induction of erythroid differentiation in murine virus infected erythroleukemia cells by highly polar compounds. Proc Natl Acad Sci U S A 72:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008) Acetylation is indispensable for p53 activation. Cell 133:612–626

    Article  PubMed  CAS  Google Scholar 

  • Tanner KG, Trievel RC, Kuoi M et al (1999) Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem 274:18157–18160

    Article  PubMed  CAS  Google Scholar 

  • Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807

    Article  PubMed  CAS  Google Scholar 

  • Taunton J, Collins JL, Schreiber SL (1996a) Synthesis of natural and modified trapoxins, useful reagents for exploring histone deacetylase function. J Am Chem Soc 118:10412–10422

    Article  CAS  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996b) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  PubMed  CAS  Google Scholar 

  • Teng Y, Iuchi K, Iwasa E et al (2010) Unnatural enantiomer of chaetocin shows strong apoptosis-inducing activity through caspase-8/caspase-3 activation. Bioorg Med Chem Lett 20:5085–5088

    Article  PubMed  CAS  Google Scholar 

  • Tessier P, Smil DV, Wahhab A et al (2009) Diphenylmethylene hydroxamic acids as selective class IIa histone deacetylase inhibitors. Bioorg Med Chem Lett 19:5684–5688

    Article  PubMed  CAS  Google Scholar 

  • Thaler F, Minucci S (2011) Next generation histone deacetylase inhibitors: the answer to the search for optimized epigenetic therapies? Expert Opin Drug Discov 6:393–404

    Article  PubMed  CAS  Google Scholar 

  • Tibodeau JD, Benson LM, Isham CR, Owen WG, Bible KC (2009) The anticancer agent chaetocin is a competitive substrate and inhibitor of thioredoxin reductase. Antioxid Redox Signal 11:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Nakajima H, Hori Y et al (1994a) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J Antibiot 47:301–310

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Manda T, Matsumoto S et al (1994b) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968 III. Antitumor activities on experimental tumors in mice. J Antibiot 47:315–324

    Article  PubMed  CAS  Google Scholar 

  • Uekia M, Teruya T, Nie L, Usamib R, Yoshida M, Osada H (2001) New trichostatin derivative, trichostatin RK, from Streptomyces sp. RK98-A74. J Antibiot 54:1093–1095

    Article  Google Scholar 

  • Umehara K, Nakahara K, Kiyoto S et al (1983) Studies on WF-3161, a new antitumor antibiotic. J Antibiot 36:478–483

    Article  PubMed  CAS  Google Scholar 

  • Vannini A, Volpari C, Filocamo G et al (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 101:15064–15069

    Article  PubMed  CAS  Google Scholar 

  • Voigt W (2005) Sulforhodamine B assay and chemosensitivity. Methods Mol Med 110:39–48

    PubMed  CAS  Google Scholar 

  • Wang Y, Tsay Y, Chin-Ming Tan B, Lo W, Lee S (2003) Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem 278:25568–25576

    Article  PubMed  CAS  Google Scholar 

  • Wegener D, Wirsching F, Riester D, Schwienhorst A (2003) A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chem Biol 10:61–68

    Article  PubMed  CAS  Google Scholar 

  • Whitehurst AW, Bodemann BO, Cardenas J et al (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446:815–819

    Article  PubMed  CAS  Google Scholar 

  • Wilson AJ, Byun DS, Popova N et al (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281:13548–13558

    Article  PubMed  CAS  Google Scholar 

  • Witt O, Deubzer HE, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21

    Article  PubMed  CAS  Google Scholar 

  • Wood JG, Rogina B, Lavu S et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Jing C, Wilson JR et al (2003) Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421:652–656

    Article  PubMed  CAS  Google Scholar 

  • Xiao JJ, Huang Y, Dai Z et al (2005) Chemoresistance to depsipeptide FK228 [(E)-(1  S,4  S,10  S,21R)-7-[(Z)-Ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo[8,7,6]-tricos-16-ene-3,6,9,22-pentanone] is mediated by reversible MDR1 induction in human cancer cell lines. J Pharmacol Exp Ther 314:467–475

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Woods NT, Piluso LG et al (2009) p53 acetylation is crucial for its transcription-independent proapoptotic functions. J Biol Chem 284:11171–11183

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Culhane JC, Szewczuk LM et al (2007) Structural basis of histone demethylation by LSD1 revealed by suicide inactivation. Nat Struct Mol Biol 14:535–539

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Rao R, Shen J et al (2008) Role of acetylation and extracellular location of heat shock protein 90A in tumor cell invasion. Cancer Res 68:4833–4842

    Article  PubMed  CAS  Google Scholar 

  • Ying Y, Taori K, Kim H, Hong J, Luesch H (2008) Total synthesis and molecular target of largazole, a histone deacetylase inhibitor. J Am Chem Soc 130:8455–8459

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174–17179

    PubMed  CAS  Google Scholar 

  • Young CW, Fanucchi MP, Walsh TD et al (1988) Phase I trial and clinical pharmacological evaluation of hexamethylene bisacetamide administration by ten-day continuous intravenous infusion at twenty-eight-day intervals. Cancer Res 48:7304–7309

    PubMed  CAS  Google Scholar 

  • Yuan Z, Guan Y, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307:269–273

    Article  PubMed  CAS  Google Scholar 

  • Zarse K, Schmeisser S, Birringer M, Falk E, Schmoll D, Ristow M (2010) Differential effects of resveratrol and SRT1720 on lifespan of adult Caenorhabditis elegans. Horm Metab Res 42:837–839

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11:509–520

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yang Z, Khan SI et al (2003a) Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 12:177–185

    Article  PubMed  Google Scholar 

  • Zhang Y, Li N, Caron C et al (2003b) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22:1168–1179

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Lu S, Wu L et al (2006) Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21Waf1/Cip1. Mol Cell Biol 26:2782–2790

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Xu W, Wenqing J et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Natural products research in the authors’ laboratory is supported by the National Institutes of Health, NIGMS grant P41GM806210 and NCI grants R01CA138544 and R21CA133681, and the Bankhead-Coley Cancer Research Program, grant 1BG07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Luesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salvador, L.A., Luesch, H. (2013). HDAC Inhibitors and Other Histone Modifying Natural Products as Emerging Anticancer Agents. In: Koehn, F. (eds) Natural Products and Cancer Drug Discovery. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4654-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4654-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4653-8

  • Online ISBN: 978-1-4614-4654-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics