Skip to main content

Cell-Based Therapies for Spinal Fusion

  • Chapter
  • First Online:
Regenerative Biology of the Spine and Spinal Cord

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 760))

Abstract

During spinal fusion procedures, bone grafts are placed to promote bone healing and to provide stability. The autologous graft is the current clinical standard of care due to its ability to initiate bone formation and because it poses no risk of rejection; however, it has drawbacks such as donor site morbidity and limited supply. Due to processing for sterility and storage, allogeneic grafts have reduced osteoinductive properties and thus must be delivered with osteoinductive agents. As a result, bone morphogenetic proteins have been used increasingly to augment bone repair, but in certain locations these proteins can cause complications such as swelling and ectopic bone formation. The drawbacks associated with these treatments have prompted increased investigations into using cells to deliver osteoinductive agents. Clinical studies have demonstrated that when osteoprogenitor cells are combined with osteoconductive materials, fusion rates are comparable to autograft results. Preclinical investigations have achieved superior spinal fusion rates in as little as two weeks using cells genetically modified to deliver osteoinductive agents. Immunoisolation of allogeneic cells by microencapsulation has demonstrated the feasibility of using non-autologous cells, thereby eliminating the need for immunosuppressants. This chapter describes the latest research advances in promoting spinal fusion using these cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lewandrowski KU, D Gresser J, Wise DL et al. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly (propylene glycol-cofumaric acid)-based cement implants in rats. Biomaterials 2000; 21(8):757–764.

    Article  CAS  PubMed  Google Scholar 

  2. Marino JT, Ziran BH. Use of solid and cancellous autologous bone graft for fractures and nonunions. Orthopedic Clinics of North America 2010; 41(1):15–26.

    Article  PubMed  Google Scholar 

  3. Deyo R, Nachemson A, Mirza S. Spinal-fusion surgery—the case for restraint. New England Journal of Medicine 2004; 350(7):722–726.

    Article  CAS  PubMed  Google Scholar 

  4. Agency for Healthcare Research and Quality. Healthcare Cost and Utilization Project, HCUPnet 2007; http://www.ahrq.gov/research/aug07/0807RA32.htm. Accessed 2011.

    Google Scholar 

  5. Turner JA, Ersek M, Herron L et al. Patient outcomes after lumbar spinal fusions. JAMA 1992;268(7):907–911.

    Article  CAS  PubMed  Google Scholar 

  6. Guyer RD, Roush TF. Spinal Fusion: Combined Anteroposterior Approach. In: Phillips FM, Lauryssen C, eds. The Lumbar Intervertebral Disc New York: Thieme 2009:241–247.

    Google Scholar 

  7. Sandhu HS, Kanim LE, Toth JM et al. Experimental spinal fusion with recombinant human bone morphogenetic protein-2 without decortication of osseous elements. Spine 1997; 22(11):1171–1180.

    Article  CAS  PubMed  Google Scholar 

  8. Shen FH, Samartzis D, An HS. Cell technologies for spinal fusion. The Spine Journal 2005; 5(6):S231–S239.

    Article  Google Scholar 

  9. Hacker RJ. A randomized prospective study of an anterior cervical interbody fusion device with a minimum of 2 years of follow-up results. Journal of Neurosurgery: Spine 2000; 93(2):222–226.

    CAS  Google Scholar 

  10. Kneser U, Schaefer D, Polykandriotise et al. Tissue engineering of bone: the reconstructive surgeon’s point of view. Journal of Cellular and Molecular Medicine 2006; 10(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  11. Gottfried O, Dailey A. Mesenchymal stem cell and gene therapies for spinal fusion. Topic Review. Neurosurgery 2008; 63(3):380–392.

    Article  PubMed  Google Scholar 

  12. Delawi D, Dhert WJA, Castelein RM et al. The incidence of donor site pain after bone graft harvesting from the posterior iliac crest may be overestimated: a study on spine fracture patients. Spine 2007; 32(17):1865.

    Article  PubMed  Google Scholar 

  13. Robertson PA, Wray AC. Natural history of posterior iliac crest bone graft donation for spinal surgery: a prospective analysis of morbidity. Spine 2001; 26(13):1473.

    Article  CAS  PubMed  Google Scholar 

  14. Sawin PD, Traynelis VC, Menezes AH. A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. Journal of Neurosurgery 1998; 88(2):255–265.

    Article  CAS  PubMed  Google Scholar 

  15. Silber JS, Anderson DG, Daffner SD et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 2003; 28(2):134.

    Article  PubMed  Google Scholar 

  16. Steinmann JC, Herkowitz HN. Pseudarthrosis of the spine. Clinical Orthopaedics and Related Research 1992; 284:80.

    Google Scholar 

  17. Fernyhough JC, Schimandle JJ, Weigel MC et al. Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion. Spine 1992; 17(12):1474.

    Article  CAS  PubMed  Google Scholar 

  18. Jones AL, Bucholz RW, Bosse MJ et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects: A randomized, controlled trial. The Journal of Bone and Joint Surgery 2006; 88(7):1431–1441.

    Article  PubMed  Google Scholar 

  19. Pradhan BB, Bae HW, Dawson EG et al. Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine 2006; 31(10):E277.

    Article  PubMed  Google Scholar 

  20. Bessa P, Casal M, Reis R. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). Journal of Tissue Engineering and Regenerative Medicine 2008; 2(2–3):81–96.

    Article  CAS  PubMed  Google Scholar 

  21. Shields LBE, Raque GH, Glassman SD et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 2006; 31(5):542.

    Article  PubMed  Google Scholar 

  22. Smucker JD, Rhee JM, Singh K et al. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine 2006; 31(24):2813.

    Article  PubMed  Google Scholar 

  23. Cahill KS, Chi JH, Day A et al. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA: the journal of the American Medical Association 2009; 302(1):58.

    Article  CAS  PubMed  Google Scholar 

  24. Rihn JA, Patel R, Makda J et al. Complications associated with single-level transforaminal lumbar interbody fusion. The Spine Journal 2009; 9(8):623–629.

    Article  PubMed  Google Scholar 

  25. Wong DA, Kumar A, Jatana S et al. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). The Spine Journal 2008; 8(6):1011–1018.

    Article  PubMed  Google Scholar 

  26. Lewandrowski KU, Nanson C, Calderon R. Vertebral osteolysis after posterior interbody lumbar fusion with recombinant human bone morphogenetic protein 2: a report of five cases. The Spine Journal 2007; 7(5):609–614.

    Article  PubMed  Google Scholar 

  27. Vaidya R, Weir R, Sethi A et al. Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. Journal of Bone and Joint Surgery-British Volume 2007; 89(3):342.

    Article  CAS  Google Scholar 

  28. Thawani JP, Wang AC, Than KD et al. Bone morphogenetic proteins and cancer: review of the literature. Neurosurgery 2010; 66(2):233.

    Article  PubMed  Google Scholar 

  29. Hamdy FC, Autzen P, Robinson MC et al. Immunolocalization and messenger RNA expression of bone morphogenetic protein-6 in human benign and malignant prostatic tissue. Cancer Research 1997; 57(19):4427.

    CAS  PubMed  Google Scholar 

  30. Carragee EJ, Mitsunaga KA, Hurwitz EL et al. Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. The Spine Journal: Official Journal of the North American Spine Society 2011.

    Google Scholar 

  31. Kim PD, Ludwig S, Poelstra K et al. Ectopic Bone formation in the pelvis after combined anterior and posterior fusion of the spine with osteogenic protein-1 use: a case report. Journal of Spinal Disorders and Techniques 2010; 23(3):215.

    Article  PubMed  Google Scholar 

  32. Laursen M, Høy K, Hansen E et al. Recombinant bone morphogenetic protein-7 as an intracorporal bone growth stimulator in unstable thoracolumbar burst fractures in humans: preliminary results. European Spine Journal 1999; 8(6):485–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lutolf MP, Weber FE, Schmoekel HG et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnology 2003; 21(5):513–518.

    Article  CAS  PubMed  Google Scholar 

  34. Uludag H, D’Augusta D, Palmer R et al. Characterization of rhBMP-2 pharmacokinetics implanted with biomaterial carriers in the rat ectopic model. Journal of Biomedical Materials Research 1999; 46(2):193–202.

    Article  CAS  PubMed  Google Scholar 

  35. Schmoekel HG, Weber FE, Schense JC et al. Bone repair with a form of BMP 2 engineered for incorporation into fibrin cell in growth matrices. Biotechnology and Bioengineering 2005; 89(3):253–262.

    Article  CAS  PubMed  Google Scholar 

  36. Calori G, Donati D, Di Bella C et al. Bone morphogenetic proteins and tissue engineering: future directions. Injury 2009; 40:S67–S76.

    Article  PubMed  Google Scholar 

  37. Burkus JK. New Bone Graft Techniques and Applications in the Spine. Collaborative Medical Education Lecture (Council for Continuing Medical Education), USA 2002.

    Google Scholar 

  38. Balmayor E, Feichtinger G, Azevedo H et al. Starch-poly—caprolactone Microparticles Reduce the Needed Amount of BMP-2. Clinical Orthopaedics and Related Research® 2009; 467(12):3138–3148.

    Article  CAS  Google Scholar 

  39. Alanay A, Chen CH, Lee S et al. The adjunctive effect of a binding peptide on bone morphogenetic protein enhanced bone healing in a rodent model of spinal fusion. Spine 2008; 33(16):1709.

    Article  PubMed  Google Scholar 

  40. Wang JC, Kanim L, Yoo S et al. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. The Journal of Bone and Joint Surgery American volume 2003; 85(5):905.

    Article  PubMed  Google Scholar 

  41. Lieberman J, Daluiski A, Stevenson S et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. The Journal of Bone and Joint Surgery American Volume 1999; 81(7):905.

    Article  CAS  PubMed  Google Scholar 

  42. Kimelman N, Pelled G, Helm GA et al. Review: gene-and stem cell-based therapeutics for bone regeneration and repair. Tissue Engineering 2007; 13(6):1135–1150.

    Article  CAS  PubMed  Google Scholar 

  43. Zilberman Y, Turgeman G, Pelled G et al. Polymer encapsulated engineered adult mesenchymal stem cells secrete exogenously regulated rhBMP2 and induce osteogenic and angiogenic tissue formation. Polymers for Advanced Technologies 2002; 13(10–12):863–870.

    Article  CAS  Google Scholar 

  44. Olabisi RM, Lazard ZWW, Franco CL et al. Hydrogel microsphere encapsulation of a cell-based gene therapy system increases cell survival of injected cells, transgene expression, and bone volume in a model of heterotopic ossification. Tissue Engineering Part A 2010; 16(12):3727–3736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chan BP, Hui TY, Wong MY et al. Mesenchymal stem cell-encapsulated collagen microspheres for bone tissue engineering. Tissue Engineering Part C: Methods 2009; 16(2):225–235.

    Article  Google Scholar 

  46. Ding H, Liu R, Li B et al. Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules. Biochemical and Biophysical Research Communications 2007; 362(4):923–927.

    Article  CAS  PubMed  Google Scholar 

  47. Lee K, Chan CK, Patil N et al. Cell therapy for bone regeneration—bench to bedside. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009; 89(1):252–263.

    Article  CAS  Google Scholar 

  48. Wakitani S, Nawata M, Tensho K et al. Repair of articular cartilage defects in the patello femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. Journal of Tissue Engineering and Regenerative Medicine 2007; 1(1):74–79.

    Article  PubMed  Google Scholar 

  49. Gan Y, Dai K, Zhang P et al. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 2008; 29(29):3973–3982.

    Article  CAS  PubMed  Google Scholar 

  50. Heary RF, Kumar S, Karimi RJ. Dorsal lumbar interbody fusion for chronic axial, mechanical low back pain: a modification of two established techniques. Neurosurgery 2008; 63(1):ONS102.

    PubMed  Google Scholar 

  51. Taghavi CE, Lee KB, Keorochana G et al. Bone morphogenetic protein-2 and bone marrow aspirate with allograft as alternatives to autograft in instrumented revision posterolateral lumbar spinal fusion: a minimum two-year follow-up study. Spine 2010; 35(11):1144.

    Article  PubMed  Google Scholar 

  52. Grove JE, Bruscia E, Krause DS. Plasticity of Bone Marrow-Derived Stem Cells. Stem Cells 2004; 22(4):487–500.

    Article  PubMed  Google Scholar 

  53. Kim HJ, Park JB, Lee JK et al. Transplanted xenogenic bone marrow stem cells survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits. European Spine Journal 2008; 17(11):1515–1521.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gupta MC, Theerajunyaporn T, Maitra S et al. Efficacy of mesenchymal stem cell enriched grafts in an ovine posterolateral lumbar spine model. Spine 2007; 32(7):720.

    Article  PubMed  Google Scholar 

  55. Qian Y, Lin Z, Chen J et al. Natural bone collagen scaffold combined with autologous enriched bone marrow cells for induction of osteogenesis in an ovine spinal fusion model. Tissue Engineering Part A 2009; 15(11):3547–3558.

    Article  CAS  PubMed  Google Scholar 

  56. Muschler GF, Nitto H, Matsukura Y et al. Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clinical Orthopaedics and Related Research 2003; 407:102.

    Article  Google Scholar 

  57. Orii H, Sotome S, Chen J et al. Beta-tricalcium phosphate (b-TCP) graft combined with bone marrow stromal cells (MSCs) for posterolateral spine fusion. Journal of medical and dental sciences 2005; 52(1):51.

    PubMed  Google Scholar 

  58. Muschler GF, Matsukura Y, Nitto H et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clinical Orthopaedics and Related Research 2005; 432:242.

    Article  Google Scholar 

  59. Lopez MJ, McIntosh KR, Spencer ND et al. Acceleration of spinal fusion using syngeneic and allogeneic adult adipose derived stem cells in a rat model. Journal of Orthopaedic Research 2009; 27(3):366–373.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Muschler GF, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. Journal of Bone and Joint Surgery. American volume 1997; 79(11):1699–1709.

    Article  CAS  Google Scholar 

  61. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 2004; 86(7):1541–1558.

    Article  PubMed  Google Scholar 

  62. Buchl EH, Freeman C, Hostin R et al. Evaluation of Bone Marrow Aspirate vs. Bone Morphogenetic Protein (RhBMP2) in Multilevel Adult Spinal Deformity Surgery: Minimum Two Year Evaluation of Anterior Fusion Rates and Clinical Outcomes. Spine: Affiliated Society Meeting Abstracts: Scientific Program Abstracts 2009; 10:70.

    Google Scholar 

  63. Kai T, Shao-qing G, Geng-ting D. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion. Spine 2003; 28(15):1653.

    PubMed  Google Scholar 

  64. Nakajima T, Iizuka H, Tsutsumi S et al. Evaluation of posterolateral spinal fusion using mesenchymal stem cells: differences with or without osteogenic differentiation. Spine 2007; 32(22):2432.

    Article  PubMed  Google Scholar 

  65. Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999; 286(5448):2244.

    Article  CAS  PubMed  Google Scholar 

  66. Hacein-Bey-Abina S, von Kalle C, Schmidt M et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. New England Journal of Medicine 2003; 348(3):255–256.

    Article  PubMed  Google Scholar 

  67. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics 2003; 4(5):346–358.

    Article  CAS  PubMed  Google Scholar 

  68. Phillips FM, Bolt PM, He TC et al. Gene therapy for spinal fusion. The Spine Journal 2005; 5(6):S250–S258.

    Article  Google Scholar 

  69. Miyazaki M, Sugiyama O, Zou J et al. Comparison of lentiviral and adenoviral gene therapy for spinal fusion in rats. Spine 2008; 33(13):1410.

    Article  PubMed  Google Scholar 

  70. Olabisi RM, Lazard ZW, Heggeness MH et al. An injectable method for noninvasive spine fusion. The Spine Journal. 2011; 11(6):545–556.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gerdes CA, Castro MG, Lowenstein P. Strong promoters are the key to highly efficient, noninflammatory and noncytotoxic adenoviral-mediated transgene delivery into the brain in vivo. Mol Ther 2000; 2(4):330–338.

    Article  CAS  PubMed  Google Scholar 

  72. Fouletier-Dilling CM, Bosch P, Davis AR et al. Novel compound enables high-level adenovirus transduction in the absence of an adenovirus-specific receptor. Human Gene Therapy 2005; 16(11):1287–1297.

    Article  CAS  PubMed  Google Scholar 

  73. Gugala Z, Olmsted-Davis E, Gannon F et al. Osteoinduction by ex vivo adenovirus-mediated BMP2 delivery is independent of cell type. Gene Therapy 2003; 10(16):1289–1296.

    Article  CAS  PubMed  Google Scholar 

  74. Peterson L. Trends in Medicine: Growth Factors. American Academy of Orthopedic Surgeons 2003; http://www.trends-in-medicine.com/2003/Orthopedic023p_OnlinePDF.pdf. Accessed 2011.

    Google Scholar 

  75. Huang JI, Goldberg VM. Orthopedic Applications of Stem Cells. In: Lanza R, ed. Essentials of Stem Cell Biology. San Diego, CA: Elsevier, Inc 2009; 561–571.

    Chapter  Google Scholar 

  76. Medtronic Infuse controversy raises lingering ethical questions. MedCity News 2011; http://www.medcitynews.com/2011/07/medtronic-stocks-recover-amid-infuse-controversy. Accessed 2011.

    Google Scholar 

  77. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. The Spine Journal 2011; 11(6):471–491.

    Article  PubMed  Google Scholar 

  78. Wozney JM. Overview of bone morphogenetic proteins. Spine 2002; 27(16S):S2.

    Article  PubMed  Google Scholar 

  79. Israel DI, Nove J, Kerns KM et al. Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo. Growth Factors 1996; 13(3–4):291–300.

    Article  CAS  PubMed  Google Scholar 

  80. Azari K, Doll BA, Sfeir C et al. Therapeutic potential of bone morphogenetic proteins. Expert Opinion on Investigational Drugs 2001; 10(9):1677.

    Article  CAS  PubMed  Google Scholar 

  81. Israel DI, Nove J, Kerns KM et al. Expression and characterization of bone morphogenetic protein-2 in Chinese hamster ovary cells. Growth Factors 1992; 7(2):139–150.

    Article  CAS  PubMed  Google Scholar 

  82. Sampath TK, Coughlin JE, Whetstone RM et al. Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. Journal of Biological Chemistry 1990; 265(22):13198.

    CAS  PubMed  Google Scholar 

  83. Qi H, Aguiar DJ, Williams SM et al. Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells. Proceedings of the National Academy of Sciences 2003; 100(6):3305.

    Article  CAS  Google Scholar 

  84. Andersen DC, Krummen L. Recombinant protein expression for therapeutic applications. Current Opinion in Biotechnology 2002; 13(2):117–123.

    Article  CAS  PubMed  Google Scholar 

  85. Jenkins N, Parekh RB, James DC. Getting the glycosylation right: implications for the biotechnology industry. Nature Biotechnology 1996; 14(8):975–981.

    Article  CAS  PubMed  Google Scholar 

  86. Olmsted-Davis EA, Gugala Z, Gannon FH et al. Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Human Gene Therapy 2002; 13(11):1337–1347.

    Article  CAS  PubMed  Google Scholar 

  87. Kim GB, Kim JR, Ahn MH et al. Spinal fusion based on ex vivo gene therapy using recombinant human BMP adenoviruses. Yeungnam University Journal of Medicine 2007; 24(2):262–274.

    Article  Google Scholar 

  88. Peterson B, Iglesias R, Zhang J et al. Genetically modified human derived bone marrow cells for posterolateral lumbar spine fusion in athymic rats: beyond conventional autologous bone grafting. Spine 2005; 30(3):283.

    Article  PubMed  Google Scholar 

  89. Wang J, Kanim L, Yoo S et al. The effect of BMP-producing marrow cells created via gene therapy on spinal fusion in a rodent model. Trans Orthopaed Res Soc 2000; 25:327.

    CAS  Google Scholar 

  90. Hidaka C, Goshi K, Rawlins B et al. Enhancement of spine fusion using combined gene therapy and tissue engineering BMP-7-expressing bone marrow cells and allograft bone. Spine 2003; 28(18):2049.

    Article  PubMed  Google Scholar 

  91. Kim HS, Viggeswarapu M, Boden SD et al. Overcoming the immune response to permit ex vivo gene therapy for spine fusion with human type 5 adenoviral delivery of the LIM mineralization protein-1 cDNA. Spine 2003; 28(3):219.

    PubMed  Google Scholar 

  92. Viggeswarapu M, Boden SD, Liu Y et al. Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. Journal of Bone and Joint Surgery-A-American Volumes 2001; 83(3):364–376.

    Article  Google Scholar 

  93. Kim HS, Park HW, Lee HM et al. Bone forming gene therapy (immune animal model in ex vivo gene therapy for spinal fusion with type 5 adenoviral delivery of the LIM mineralization protein-1 cDNA). Journal of Korean Society of Spine Surgery 2001; 8(4):437–446.

    Article  CAS  Google Scholar 

  94. Zheng Z, Dong Z, Kuang G et al. Experimental study on spinal fusion induced by hBMP-4 gene modified tissue engineered bone. Zhonghua Wai Ke Za Zhi [Chinese Journal of Surgery] 2009; 47(3):197.

    Google Scholar 

  95. Miyazaki M, Sugiyama O, Tow B et al. The effects of lentiviral gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. The Spine Journal 2007; 7(5):57S–58S.

    Article  Google Scholar 

  96. Boden S, Titus L, Hair G et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998; 23(23):2486–2492.

    Article  CAS  PubMed  Google Scholar 

  97. Lee TC, Ho JT, Hung KS et al. Bone morphogenetic protein gene therapy using a fibrin scaffold for a rabbit spinal-fusion experiment. Neurosurgery 2006; 58(2):373.

    Article  PubMed  Google Scholar 

  98. Hsu WK, Wang JC, Liu NQ et al. Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. The Journal of Bone and Joint Surgery (American) 2008; 90(5):1043–1052.

    Article  Google Scholar 

  99. Miyazaki M, Zuk PA, Zou J et al. Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene therapy in rat spinal fusion model. Spine 2008; 33(8):863.

    Article  PubMed  Google Scholar 

  100. Riew DK, Lou J, Wright NM et al. Thoracoscopic intradiscal spine fusion using a minimally invasive gene-therapy technique. The Journal of Bone and Joint Surgery (American) 2003; 85(5):866–871.

    Article  Google Scholar 

  101. Riew K, Wright N, Cheng SL et al. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcified Tissue International 1998; 63(4):357–360.

    Article  CAS  PubMed  Google Scholar 

  102. Dumont RJ, Dayoub H, Li JZ et al. Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents. Neurosurgery 2002; 51(5):1239.

    Article  PubMed  Google Scholar 

  103. Sheyn D, Pelled G, Zilberman Y et al. Nonvirally engineered porcine adipose tissue derived stem cells: use in posterior spinal fusion. Stem Cells 2008; 26(4):1056–1064.

    Article  PubMed  Google Scholar 

  104. Sheyn D, Rüthemann M, Mizrahi O et al. Genetically modified mesenchymal stem cells induce mechanically stable posterior spine fusion. Tissue Engineering Part A 2010; 16(12):3679–3686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hasharoni A, Zilberman Y, Turgeman G et al. Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. Journal of Neurosurgery: Spine 2005; 3(1):47–52.

    PubMed  Google Scholar 

  106. Kang Q, Sun M, Cheng H et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Therapy 2004; 11(17):1312–1320.

    Article  CAS  PubMed  Google Scholar 

  107. Oakes DA, Lieberman JR. Osteoinductive applications of regional gene therapy: ex vivo gene transfer. Clinical Orthopaedics and Related Research 2000; 379:S101.

    Article  Google Scholar 

  108. Minamide A, Boden SD, Viggeswarapu M et al. Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1. Journal of Bone and Joint Surgery: American Volume 2003; 85(6):1030–1039.

    Article  Google Scholar 

  109. Chang TMS, MacIntosh FC, Mason SG. Semipermeable aqueous microcapsules: I. Preparation and properties. Canadian Journal of Physiology and Pharmacology 1966; 44(1):115–128.

    Article  CAS  PubMed  Google Scholar 

  110. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210(4472):908.

    Article  CAS  PubMed  Google Scholar 

  111. O’Shea GM, Sun A. Encapsulation of rat islets of Langerhans prolongs xenograft survival in diabetic mice. Diabetes 1986; 35(8):943.

    Article  CAS  Google Scholar 

  112. Soon-Shiong P, Heintz R, Merideth N et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 1994; 343(8903):950–951.

    Article  CAS  PubMed  Google Scholar 

  113. Sun AM, O’Shea GM, Goosen MFA. Injectable microencapsulated islet cells as a bioartificial pancreas. Applied Biochemistry and Biotechnology 1984; 10(1):87–99.

    Article  CAS  PubMed  Google Scholar 

  114. Peirone M, Delaney K, Kwiecin J et al. Delivery of recombinant gene product to canines with non-autologous microencapsulated cells. Human Gene Therapy 1998; 9(2):195–206.

    Article  CAS  PubMed  Google Scholar 

  115. Baker J. A Phase I/IIa Open-label Investigation of the Safety and Effectiveness of DIABECELL(R) [Immunoprotected (Alginate-Encapsulated) Porcine Islets for Xenotransplantation] in Patients With Type I Diabetes Mellitus (Study NCT00940173) 2009–2013; http://www.clinicaltrials.gov/. Accessed 2011.

    Google Scholar 

  116. Dufrane D. A Monocentre Phase 1 Trial to Assess a Monolayer Cellular Device in the Treatment of Type 1 Diabetes (Study NCT00790257). 2008–2013; http://www.clinicaltrials.gov/. Accessed 2011.

    Google Scholar 

  117. Keymeulen B. Functional Survival of Beta Cell Allografts After Transplantation in the Peritoneal Cavity of Non-uremic Type 1 Diabetic Patients (Study NCT01379729). 2011−2018; http://www.clinicaltrials./. Accessed 2011.

    Google Scholar 

  118. Schwartz S, Mulgrew P. A Single-Center Phase I/II Study of Peg-Encapsulated Islet Allografts Implanted in Patients with Type I Diabetes (Study NCT00260234). 2005−2010; http://www.clinicaltrials.gov. Accessed 2011.

    Google Scholar 

  119. Rabanel JM, Banquy X, Zouaoui H et al. Progress technology in microencapsulation methods for cell therapy. Biotechnology Progress 2009; 25(4):946–963.

    Article  CAS  PubMed  Google Scholar 

  120. Löhr M, Hoffmeyer A, Kröger JC et al. Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. The Lancet 2001; 357(9268):1591–1592.

    Article  Google Scholar 

  121. Aebischer P, Buchser E, Joseph JM et al. Transplantation in humans of encapsulated xenogeneic cells without immunosuppression: A preliminary report. Transplantation 1994; 58(11):1275.

    Article  CAS  PubMed  Google Scholar 

  122. Jönhagen ME. An Open Label, Dose-Escalation Study of Encapsulated Cell Biodelivery of Nerve Growth Factor to the Cholinergic Basal Forebrain of Alzheimer’s Disease Patients (Study NCT01163825). 2011−2018; http://www.clinicaltrials./. Accessed 2011.

    Google Scholar 

  123. Tao W. A Phase II/III Study of Encapsulated Human NTC-201 Cell Implants Releasing Ciliary Neurotrophic Factor (CNTF) for Participants with Retinitis Pigmentosa Using Visual Acuity as the Primary Outcome (Study NCT00447993). 2007−2009; http://www.clinicaltrials.gov/. Accessed 2011.

    Google Scholar 

  124. Chan BP, Hui T, Yeung C et al. Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials 2007; 28(31):4652–4666.

    Article  CAS  PubMed  Google Scholar 

  125. Payne RG, McGonigle JS, Yaszemski MJ et al. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly (propylene fumarate). Biomaterials 2002; 23(22):4373–4380.

    Article  CAS  PubMed  Google Scholar 

  126. Payne RG, McGonigle JS, Yaszemski MJ et al. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly (propylene fumarate). Biomaterials 2002; 23(22):4381–4387.

    Article  CAS  PubMed  Google Scholar 

  127. Payne RG, Yaszemski MJ, Yasko AW et al. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials 2002; 23(22):4359–4371.

    Article  CAS  PubMed  Google Scholar 

  128. Abbah S, Lu W, Cheung K et al. Polymer encapsulated human osteoblastic cells form ectopic bone in mice. Presented at: 52nd Annual Meeting of the Orthopaedic Research Society 2006.

    Google Scholar 

  129. Raval P, Hsu H, Schneider D et al. Expression of bone morphogenetic proteins by osteoinductive and non-osteoinductive human osteosarcoma cells. Journal of Dental Research 1996; 75(7):1518.

    Article  CAS  PubMed  Google Scholar 

  130. Grellier M, Granja PL, Fricain JC et al. The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials 2009; 30(19):3271–3278.

    Article  CAS  PubMed  Google Scholar 

  131. Ronke Olabisi, Corinne Sonnet, ZaWaunyka Lazard et al. Hydrogel microencapslation permits critical size defect repair via gene therapy. Presented at: The Society For Biomaterials Annual Meeting and Exposition 2011; Orlando, FL.

    Google Scholar 

  132. Wang T, Dang G, Guo Z et al. Evaluation of autologous bone marrow mesenchymal stem cell-calcium phosphate ceramic composite for lumbar fusion in rhesus monkey interbody fusion model. Tissue Engineering 2005; 11(7–8):1159–1167.

    Article  Google Scholar 

  133. Minamide A, Yoshida M, Kawakami M et al. The effects of bone morphogenetic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spine fusion. Spine 2007; 32(10):1067.

    Article  PubMed  Google Scholar 

  134. Fu TS, Chen WJ, Chen LH et al. Enhancement of posterolateral lumbar spine fusion using low dose rhBMP 2 and cultured marrow stromal cells. Journal of Orthopaedic Research 2009; 27(3):380–384.

    Article  PubMed  Google Scholar 

  135. Seo HS, Jung JK, Lim MH et al. Evaluation of spinal fusion using bone marrow derived mesenchymal stem cells with or without fibroblast growth factor-4. Journal of Korean Neurosurgical Society 2009; 46(4):397.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tang ZB, Cao JK, Wen N et al. Posterolateral spinal fusion with nano hydroxyapatite-collagen/PLA composite and autologous adipose derived mesenchymal stem cells in a rabbit model. Journal of Tissue Engineering and Regenerative Medicine. Early View 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Olabisi, R. (2012). Cell-Based Therapies for Spinal Fusion. In: Jandial, R., Chen, M.Y. (eds) Regenerative Biology of the Spine and Spinal Cord. Advances in Experimental Medicine and Biology, vol 760. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4090-1_10

Download citation

Publish with us

Policies and ethics