Skip to main content

Abrasive Tools and Bonding Systems

  • Chapter
  • First Online:
High Performance Grinding and Advanced Cutting Tools

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter focuses on characterizing abrasive tools in terms of grain shape, wear factors, grain toughness, and other physical characteristics. The chapter considers both conventional and superabrasive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Pellegrin DV, Corbin ND, Baldoni G, Torrance AA (2002) The measurement and description of diamond particle shape in abrasion. Wear 253:1016–1025

    Article  Google Scholar 

  2. De Pellegrin DV, Corbin ND, Baldoni G, Torrance AA (2008) Diamond particle shape: its measurement and influence in abrasive wear. Tribol Int 42(1):160–168

    Article  Google Scholar 

  3. De Pellegrin DV, Stachowiak GW (2004) Evaluating the role of particle distribution and shape in two-body abrasion by statistical simulation. Tribol Int 37:255–270

    Article  Google Scholar 

  4. Diashape—World Wide Web (2006) Diashape parameters, innovative sintering technologies. http://www.istag.ch/diamonds/parameters.html

  5. Sysmex—World Wide Web (2006) FPIA-3000 Particle analyzer—parameters. Sysmex. http://particle.sysmex.co.jp/en/fpia/parameter.html

  6. Verspui MA, van der Velden P, de With G, Slikkerveer PJ (1996) Angularity determination of abrasive powders. Wear 199:122–126

    Article  Google Scholar 

  7. Hamblin MG, Stachowiak GW (1996) Description of abrasive shape and its relation to two body abrasion. Tribol Trans 39(4):803–810

    Article  Google Scholar 

  8. Kaye BH (1984) Fractal description of fine particle systems. In: Beddow JC (ed) Particle characterization in technology, applications and microanalysis, vol 1. CRC Press, Boca Raton, FL

    Google Scholar 

  9. Swanson PA, Vetter AF (1984) The measurement of abrasive particle shape and its effect on wear. ASLE Trans 28(2):225–230

    Article  Google Scholar 

  10. Leavers VF (2000) Use of the two-dimensional radon transform to generate a taxonomy of shape for the characterization of abrasive powder particles. IEEE Trans Pattern Anal Mach Intell 22(12):1411–1423

    Article  Google Scholar 

  11. Roquefeuil F (2003) Abral: a new approach to precision grinding. Abrasive Magazine December:24–29

    Google Scholar 

  12. Komanduri R, Shaw MC (1975) Attritious wear of silicon carbide. ASME Paper # 75-WA/Prod-36

    Google Scholar 

  13. Kugemai N, Kiyoshi K (1984) Grinding of titanium with jet infusion of grinding fluid. In: Proceedings of the fifth International conference on titanium science and technology, 10–14 Sept 1984, Munich

    Google Scholar 

  14. Hirosaki K, Shintani K, Kato H, Asakura F, Matsuo K (2004) High speed machining of Bio-Titanium alloy with a binderless PcBN tool. JSME Int J C 47(1):14–20

    Article  Google Scholar 

  15. Kumar KV (1990) Superabrasive grinding of titanium alloys. In: Fourth international grinding conference on SME, 9–11 Oct 1990, Detroit

    Google Scholar 

  16. Hagiwara S, Obikawa T, Usui E (1998) Edge fracture characteristics of abrasive grain. Trans ASME J Manuf Sci Eng 120:708–714

    Article  Google Scholar 

  17. Ishikawa T, Kumar K (1991) Conditioning of vitrified bond superabrasive wheels. Superabrasives ’91 SME MR91-172

    Google Scholar 

  18. Takagi J, Liu M (1996) Fracture characteristics of grain cutting edges of CBN in truing operation. J Mater Process Technol 62:397–402

    Article  Google Scholar 

  19. Jakobuss M, Webster J (1996) Optimizing the truing and dressing of vitrified-bond CBN grinding wheels. Abrasives Magazine August/September:23

    Google Scholar 

  20. Fujimoto M, Ichida Y, Sato R, Morimoto Y (2006) Characterization of wheel surface topography in cBN grinding. JSME Int J C 19(1):106–113

    Article  Google Scholar 

  21. Yonekura Y (1983) Effects of Tsukidashiryo of resinoid bonded borazon CBN wheels on grinding performance. Bull JSPE 17(2):113–118

    Google Scholar 

  22. Mindek R (1992) Improved rotary disc truing of hot-pressed CBN grinding wheels. MSc Thesis, University of Connecticut

    Google Scholar 

  23. Acheson EG (1893) Production of artificial crystalline carbonaceous material. US Patent 492,767

    Google Scholar 

  24. Cowles AH, Cowles EH (1885) US Patent 319945

    Google Scholar 

  25. Kern EL, Hamill DW, Deem HW, Sheets HD (1969) Mater Res Bull 4

    Google Scholar 

  26. Kern EL, Hamil DW, Deam HW, Sheets HD (1969) Mater Res Bull Special Issue 4:S25–S32. Proceedings of the international conference on silicon carbide, University Park, Pennsylvania, 20–23 Oct 1968

    Google Scholar 

  27. Nilsson O, Mehling H, Horn R, Fricke J, Hofmann R, Muller SG, Eckstein R, Hofmann D (1997) High temperatures-high pressures 29:73–79

    Google Scholar 

  28. Tymeson MM (1953) The Norton story. Norton Co, Worcester, MA

    Google Scholar 

  29. Wikipedia (2009) Bayer process. Online encyclopedia reading, 20 Nov 2009

    Google Scholar 

  30. Wolfe LA, Lunghofer EP (1998) New fused alumina production in South Korea and Australia. In: 13th Industrial minerals international congress, Kuala Lumpur, Malaysia, 26–29 Apr 1998

    Google Scholar 

  31. Lunghofer EP, Wolfe LA (2000) Fused brown alumina production in China. http://www.ceramicindustry.com/copyright/77d58fabca9c7010VgnVCM100000f932a8c0_…9/24/2009. Accessed 6 Aug 2000

  32. Whiting Equipment Canada Inc. (n.d.) Metallurgical equipment. Commercial brochure

    Google Scholar 

  33. USGS Geological Survey (2009) Mineral commodity summaries. January

    Google Scholar 

  34. U.S.G.S. Geological Survey (2008) Minerals yearbook abrasives, Manufactured (advance release)

    Google Scholar 

  35. Wellborn WW (1991) Synthetic minerals—the foundation stone of modern abrasive tools. AES Magazine 31(1):6–13

    Google Scholar 

  36. Coes L (1971) Abrasives. Springer, New York, p 65

    Google Scholar 

  37. Polch (1956) US Patent 2769699, Nov 1956

    Google Scholar 

  38. Robie NP (1959) Abrasive material and method of making same. US Patent 2877104, 10 Mar 1959

    Google Scholar 

  39. Foot DG (1965) Mixture of fused alumina and fused granules in bonded abrasive articles. US Patent 3,175,8943/30

    Google Scholar 

  40. Marshall DW (1965) Fused alumina-zirconia abrasives. US Patent 3181939, 4 May 1965

    Google Scholar 

  41. Cichy P (1973) Apparatus for producing oxide refractory material having fine crystal structure. US Patent 3,726,6214/10

    Google Scholar 

  42. Richmond WQ, Cichy P (1975) Apparatus for producing oxide refractory material having fine crystal structure. US Patent 3,861,849, 21 Jan 1975

    Google Scholar 

  43. Richmond WQ, Cichy P (1975) Semi-continuous process for producing oxide refractory material having fine crystal structure. US Patent 3,928,515, 23 Nov 1975

    Google Scholar 

  44. Sekigawa H (1976) Process for manufacturing high strength Al2O3-ZRO2 alloy grains. US Patent 3,977,132, 31 Aug 1976

    Google Scholar 

  45. Ilmaier B, Zeiringer H (1977) Method for producing alumina and alumina-zirconia abrasive material. US Patent 4,059,417, 22 Nov 1977

    Google Scholar 

  46. Cichy P (1977) Continuous process for producing oxide refractory material. US Patent 4,061,699, 6 Dec 1977

    Google Scholar 

  47. Ueltz HFG (1980) Fused alumina-zirconia abrasive material formed by an immersion method. US Patent 4,194,887, 25 Mar 1980

    Google Scholar 

  48. Richmond WQ (1983) Process for making oxide refractory material having fine crystal structure. US Patent 4,415,510, 15 Nov 1983

    Google Scholar 

  49. Richmond WQ (1984) Oxide refractory material having fine crystal structure and process and apparatus for making same. US Patent 4,439,895, 3 Apr 1984

    Google Scholar 

  50. Scott JJ (1976) Progressively or continuously cycle mold for forming and discharging a fine crystalline material. US Patent 3,993,119, 23 Nov 1976

    Google Scholar 

  51. Scott JJ (1978) Method of producing abrasive grits. US Patent 4,070,796, 31 Jan 1978

    Google Scholar 

  52. Rowse RA, Watson GR (1975) Zirconia-alumina abrasive grain and grinding tools. US Patent 3,891,408, 24 June 1975

    Google Scholar 

  53. Bange D, Wood B, Erickson D (2001) Developemnt and growth of sol gel abrasives grains. Abrasives Magazine June/July:24–30

    Google Scholar 

  54. Webster JA, Tricard M (2004) Innovations in abrasive products for precision grinding. In: CIRP innovations in abrasive products for precision grinding keynote STC G, 23 Aug 2004

    Google Scholar 

  55. Bauer R (1987) Process for production of alpha alumina bodies by sintering seeded boehmite made from alumina hydrates. US Statutory Invention Disclosure H000189, 6 Jan 1987

    Google Scholar 

  56. Leitheiser MA, Sowman HG (1982) Non-fused aluminum oxide-based abrasive mineral. US Patent 4,314,827, 9 Feb 1982

    Google Scholar 

  57. Wood WP, Monroe LD, Conwell SL (1989) Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith. US Patent 4,881,951, 21 Nov 1989

    Google Scholar 

  58. Bange D, Wood B, Erickson D (2001) Development and growth of sol gel abrasives grains. Abrasives Magazine June/July:24–30

    Google Scholar 

  59. Cottringer TE, van de Merwe RH, Bauer R (1986) Abrasive material and method for preparing the same. US Patent 4,623,364, 18 Nov 1986

    Google Scholar 

  60. Schwebel MG (1988) Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products. US Patent 4,744,802, 17 May 1988

    Google Scholar 

  61. Rue CV (1985) Vitrified bonded grinding wheels containing sintered gel aluminous abrasive grits. US Patent 4,543,107, 24 Sept 1985

    Google Scholar 

  62. Pellow SW (1992) Process for the manufacture of filamentary abrasive particles. US Patent 5,090,968, 25 Feb 1992

    Google Scholar 

  63. DiCorletto J (2001) Innovations in abrasive products for precision grinding. In: Conference on precision grinding & finishing in the global economy—2001, Oak Brook, IL, 1–3 Oct 2001

    Google Scholar 

  64. Roffman R (2005) Natural industrial diamonds. Finer Point Magazine 26–30

    Google Scholar 

  65. Cockburn C (2002) Diamonds: the real story. National Geographic March:2–3

    Google Scholar 

  66. Trautman R, Griffin BJ, Scharf D (1998) Microdiamonds. Scientific American August:82–87

    Google Scholar 

  67. U.S. Geological Survey (2005) Data series 140

    Google Scholar 

  68. Ladd R (n.d.) Manufactured large single crystals. Finer Points—Wire Die Products and Applications 23–28

    Google Scholar 

  69. Bailey MW, Juchem HO (1993) The advantages of CBN grinding: low cutting forces and improved workpiece integrity. IDR Pt 3:83–89

    Google Scholar 

  70. Snoeys R, Leuven KU, Maris M, Wo NF, Peters J (1978) Thermally induced damage in grinding. Annals CIRP 27(1):571–581

    Google Scholar 

  71. Shaw MC (1991) Metal cutting principles. Clarendon, Oxford, p 410

    Google Scholar 

  72. United Grinding Technology (1995) Method of grinding titanium. WIPO Patent Application, WO/1995/003154

    Google Scholar 

  73. Campbell JD (1993) (UTC Hartford CT) Method of grinding titanium. US Patent, 5,203,122

    Google Scholar 

  74. Soo SL, Hood R, Lannette M, Aspinwall DK, Voice WE (2011) Creep feed grinding of burn reissistant titanium (BuRTi) using superabrasive wheels. Int J Adv Manuf Technol 53:1019–1026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jackson, M.J., Hitchiner, M.P. (2013). Abrasive Tools and Bonding Systems. In: High Performance Grinding and Advanced Cutting Tools. SpringerBriefs in Applied Sciences and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3116-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3116-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3115-2

  • Online ISBN: 978-1-4614-3116-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics