Skip to main content

Principles and Safety of Microwave Ablation

  • Chapter
  • First Online:
The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE)

Abstract

Microwave ablation (MWA) is a form of thermal ablation that uses electromagnetic waves to establish a microwave near-field where direct tissue heating occurs by a phenomenon called dielectric heating. MWA does not rely on electric current and is not subject to the limitations that electric current imposes. The shape of the MW near-field is determined by MW frequency and antenna design whereas the amount of energy deposited into the near-field and the final ablation size is determined by the power and duration of ablation as well as the type of tissue being targeted. MWA does not appear to be as sensitive to “thermal sink” as current-dependent thermal ablation modalities due to higher temperatures and shorter ablation times. The user should be familiar with manufacturer recommendations for ablation settings for the MWA equipment that they have selected. The user should also be aware of significant differences in safety precautions between MWA and RFA when using MWA equipment. When used appropriately, MWA can provide exceptional complete ablation rates with minimal morbidity for a wide range of primary and metastatic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology. 2011;258(2):351–69.

    Article  PubMed  Google Scholar 

  2. Padma S, Martinie JB, Iannitti DA. Liver tumor ablation: percutaneous and open approaches. J Surg Oncol. 2009;100(8):619–34.

    Article  PubMed  Google Scholar 

  3. Bhardwaj N, Strickland AD, Ahmad F, Dennison AR, Lloyd DM. Liver ablation techniques: a review. Surg Endosc. 2010;24(2):254–65.

    Article  PubMed  CAS  Google Scholar 

  4. Brace CL. Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng. 2010;38(1):65–78.

    Article  PubMed  Google Scholar 

  5. Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP. Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev. 1998;27:213–24.

    Article  CAS  Google Scholar 

  6. Bertram JM, Yang D, Converse MC, Webster JG, Mahvi DM. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model. Biomed Eng Online. 2006;5:15.

    Article  PubMed  Google Scholar 

  7. Sindram D, Haley K, McKillop IH, Martinie JB, Iannitti DA. Determination of angle, depth and distance of antennae as skin burn risks in microwave ablation in a porcine model. J Int Oncol. 2010;3(1):46–52.

    Google Scholar 

  8. Hope WW, Schmelzer TM, Newcomb WL, et al. Guidelines for power and time variables for microwave ablation in a porcine liver. J Gastrointest Surg. 2008;12(3):463–7.

    Article  PubMed  Google Scholar 

  9. Hope WW, Schmelzer TM, Newcomb WL, et al. Guidelines for power and time variables for microwave ablation in an in vivo porcine kidney. J Surg Res. 2009;153(2):263–7.

    Article  PubMed  Google Scholar 

  10. Lu DS, Raman SS, Limanond P, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol. 2003;14(10):1267–74.

    Article  PubMed  Google Scholar 

  11. Patterson EJ, Scudamore CH, Owen DA, Nagy AG, Buczkowski AK. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg. 1998;227(4):559–65.

    Article  PubMed  CAS  Google Scholar 

  12. Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee Jr FT. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology. 2005;236(1):132–9.

    Article  PubMed  Google Scholar 

  13. Byrd JF, Agee N, McKillop IH, Sindram D, Martinie JB, Iannitti DA. Colour doppler ultrasonography provides real-time microwave field visualisation in an ex vivo porcine model. HPB (Oxford). 2011;13(6):400–3.

    Article  Google Scholar 

  14. Sindram D, Haley K, McKillop IH, Martinie JB, Iannitti DA. Determination of angle, depth, and distance of antennae as skin burn risks in microwave ablation in a porcine model. J Intervent Oncol. 2010;3(1):46–52.

    Google Scholar 

  15. Martin RC, Scoggins CR, McMasters KM. Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5-year experience. Ann Surg Oncol. 2010;17(1):171–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Swan, R.Z., Iannitti, D.A. (2012). Principles and Safety of Microwave Ablation. In: Feldman, L., Fuchshuber, P., Jones, D. (eds) The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2074-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2074-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2073-6

  • Online ISBN: 978-1-4614-2074-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics