Skip to main content

DNA Replication

  • Reference work entry
  • First Online:
Molecular Life Sciences
  • 75 Accesses

Synopsis

Free-living organisms must duplicate their chromosomes before each cell division. To ensure that this process occurs at the correct time in the cell cycle, chromosomal DNA replication is highly regulated. Despite specific mechanistic differences among organisms, all domains of life use similar procedures to duplicate their chromosomes and to make certain that DNA replication occurs at the proper time. As described in this series of entries, enzymes that act as molecular machines function during each of the stages of DNA replication: initiation, elongation, and termination. The examination of these enzymes reveals that they are fascinating and complex, sharing the common feature of coordinating nucleotide binding and/or its hydrolysis with a conformational change. In addition to conformational changes during catalysis, altered conformations in these molecular machines are frequently induced during their interaction with ligands and other macromolecules that then result in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 729.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types : induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357(6374):128–134

    Article  CAS  PubMed  Google Scholar 

  • Bessman MJ et al (1958) Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J Biol Chem 233(1):171–177

    CAS  PubMed  Google Scholar 

  • Bochman ML, Schwacha A (2009) The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 73(4):652–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin F, Karkare S, Maxwell A (2011) Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 92(3):479–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePamphilis ML et al (2006) Regulating the licensing of DNA replication origins in metazoa. Curr Opin Cell Biol 18(3):231–239

    Article  CAS  PubMed  Google Scholar 

  • Diffley JF (2011) Quality control in the initiation of eukaryotic DNA replication. Philos Trans R Soc Lond B Biol Sci 366(1584):3545–3553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Q, MacAlpine DM (2011) Defining the replication program through the chromatin landscape. Crit Rev Biochem Mol Biol 46(2):165–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton ML et al (2010) Conserved nucleosome positioning defines replication origins. Genes Dev 24(8):748–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errico A, Costanzo V (2010) Differences in the DNA replication of unicellular eukaryotes and metazoans: known unknowns. EMBO Rep 11(4):270–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27(2):113–159

    Article  CAS  Google Scholar 

  • Hardy CD et al (2004) Disentangling DNA during replication: a tale of two strands. Philos Trans R Soc Lond B Biol Sci 359(1441):39–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36(1):39–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huberman JA, Riggs AD (1966) Autoradiography of chromosomal DNA fibers from Chinese hamster cells. Proc Natl Acad Sci U S A 55(3):599–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaguni JM (2011) Replication initiation at the Escherichia coli chromosomal origin. Curr Opin Chem Biol 15(5):606–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan DL, Bastia D (2009) Mechanisms of polar arrest of a replication fork. Mol Microbiol 72(2):279–285

    Article  CAS  PubMed  Google Scholar 

  • Kawakami H, Katayama T (2010) DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. Biochem Cell Biol 88(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Lehman IR et al (1958) Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem 233(1):163–170

    CAS  PubMed  Google Scholar 

  • Leonard AC, Grimwade JE (2011) Regulation of DnaA assembly and activity: taking directions from the genome. Annu Rev Microbiol 65:19–35

    Google Scholar 

  • Meselson M, Stahl FW (1958) The Replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A 44(7):671–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neylon C et al (2005) Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol Mol Biol Rev 69(3):501–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieduszynski CA, Knox Y, Donaldson AD (2006) Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev 20(14):1874–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remus D, Diffley JF (2009) Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 21(6):771–777

    Article  CAS  PubMed  Google Scholar 

  • Remus D, Beall EL, Botchan MR (2004) DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 23(4):897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sclafani RA, Holzen TM (2007) Cell cycle regulation of DNA replication. Annu Rev Genet 41:237–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vashee S et al (2003) Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 17(15):1894–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vos SM et al (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 12(12):827–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  • Yang W (2010) Topoisomerases and site-specific recombinases: similarities in structure and mechanism. Crit Rev Biochem Mol Biol 45(6):520–534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank members of my lab for their support while I wrote. This work is supported by Grant GM090063 from the National Institutes of Health, and by the Michigan Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon M. Kaguni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaguni, J.M. (2018). DNA Replication. In: Wells, R.D., Bond, J.S., Klinman, J., Masters, B.S.S. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1531-2_53

Download citation

Publish with us

Policies and ethics