Skip to main content

Development of Pitch and Music Perception

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 42))

Abstract

Music, like language, is found in all known human societies, past and present, and although music has some precursors that can be found in other species, it is a defining characteristic of the human species (Wallin et al. 2000). Although the perception of music has multisensory aspects (Thompson et al. 2005; Phillips-Silver and Trainor 2007), it is based in sound. The vibrations that give rise to music can be created by many different means, including striking percussion instruments, blowing resonating air columns in wind instruments, plucking and bowing strings under tension, and vibrating the vocal chords during singing. The boundary between sounds that are perceived as music and sounds that are not is fuzzy; indeed a definition of music remains elusive. However, the vast majority of music in the world involves spectral and temporal organizations that can readily be processed by the nervous system and for which specialized brain processing develops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002). Relations among musical skills, phonological processing and early reading ability in preschool children. Journal of Experimental Child Psychology, 83, 111–130.

    PubMed  Google Scholar 

  • Balzano, G. J. (1980). The group theoretic description of 12-fold and microtonal pitch systems. Computer Music Journal, 4, 66–84.

    Google Scholar 

  • Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24, 1832–1834.

    PubMed  Google Scholar 

  • Bendor, D., & Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature, 436,1161–1165.

    PubMed  CAS  Google Scholar 

  • Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19, 1583–1596.

    PubMed  Google Scholar 

  • Bertrand, O., & Tallon-Baudry, C. (2000). Oscillatory gamma activity in humans: A possible role for object representation. International Journal of Psychophysiology, 38, 211–223.

    PubMed  CAS  Google Scholar 

  • Besson, M., & Faïta, F. (1995). An event-related potential (ERP) study of musical expectancy: Comparison of musicians with nonmusicians. Journal of Experimental Psychology: Human Perception and Performance, 21, 1278–1296.

    Google Scholar 

  • Bharucha, J. J., & Stoeckig, K. (1986). Reaction time and musical expectancy: Priming of chords. Journal of Experimental Psychology: Human Perception and Performance, 12, 403–410.

    PubMed  CAS  Google Scholar 

  • Bharucha, J. J., & Stoeckig, K. (1987). Priming of chords: Spreading activation or overlapping frequency spectra? Perception & Psychophysics. Special Issue: The Understanding of Melody and Rhythm, 41, 519–524.

    CAS  Google Scholar 

  • Bigand, E., & Pineau, M. (1997). Global context effects on musical expectancy. Perception and Psychophysics, 59, 1098–1107.

    PubMed  CAS  Google Scholar 

  • Bigand, E., & Poulin-Charronnat, B. (2006). Are we “experienced listeners”? A review of the musical capacities that do not depend on formal musical training. Cognition, 100, 100–130.

    PubMed  CAS  Google Scholar 

  • Bigand, E., Madurell, F., Tillman, B., & Pineau, M. (1999). Effect of global structure and temporal organization on chord processing. Journal of Experimental Psychology: Human Perception and Performance, 25, 184–197.

    Google Scholar 

  • Bischoff Renninger, L., Wilson, M. P., & Donchin, E. (2006). The processing of musical scale: An ERP study of musicians trained outside of the western musical system. Empirical Musicology Review, 1, 185–197.

    Google Scholar 

  • Blood, A. J., & Zatorre, R. J. (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated with reward and emotion. Proceedings of the National Academy of Sciences of the USA, 98, 11818–11823.

    PubMed  CAS  Google Scholar 

  • Bosnyak, D. J., Eaton, R. A., & Roberts, L. E. (2004). Distributed auditory cortical representations are modified when nonmusicians are trained at pitch discrimination with 40 hz amplitude modulated tones. Cerebral Cortex, 14, 1088–1099.

    PubMed  Google Scholar 

  • Burns, E. M. (1999) Intervals, scales and tuning. In D. Deutsch (Ed.), The psychology of music (2nd ed., pp. 215–264). San Diego: Academic Press.

    Google Scholar 

  • Chang, H. W., & Trehub, S. E. (1977). Auditory processing of relational information by young infants. Journal of Experimental Child Psychology, 24, 324–331.

    Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

    Google Scholar 

  • Clarkson, M. G., & Clifton, R. K. (1985). Infant pitch perception: Evidence for responding to pitch categories and the missing fundamental. Journal of the Acoustical Society of America, 77, 1521–1528.

    PubMed  CAS  Google Scholar 

  • Clarkson, M. G., & Rogers, E. C. (1995). Infants require low-frequency energy to hear the pitch of the missing fundamental. Journal of the Acoustical Society of America, 98, 148–154.

    PubMed  CAS  Google Scholar 

  • Corrigall, K., & Trainor, L. J. (2009). Effects of musical training on key and harmony perception. Annals of the New York Academy of Sciences, 1169, 164–168.

    PubMed  Google Scholar 

  • Costa-Giomi, E. (2003). Young children’s harmonic perception. Annals of the New York Academy of Sciences, 999, 477–484.

    PubMed  Google Scholar 

  • Crawley, E. J., Acker-Mills, B. E., Pastore, R. E., & Weil, S. (2002). Change detection in multi-voice music: The role of musical structure, musical training, and task demands. Journal of Experimental Psychology: Human Perception and Performance, 28, 367–378.

    PubMed  Google Scholar 

  • Cuddy, L. L., & Badertscher, B. (1987). Recovery of the tonal hierarchy: Some comparisons across age and levels of musical experience. Perception & Psychophysics, 41, 609–620.

    CAS  Google Scholar 

  • Demany, L, & Armand, F. (1984). The perceptual reality of tone chroma in early infancy. Journal of the Acoustical Society of America, 76, 57–66.

    PubMed  CAS  Google Scholar 

  • Deutsch, D., Henthorn, T., & Dolson, M. (2004). Absolute pitch, speech and tone language: Some experiments and a proposed framework. Music Perception, 21, 339–356.

    Google Scholar 

  • Fishman, Y. I., Reser, D. H., Arezzo, J. C., & Steinschneider, M. (1998). Pitch vs. spectral encoding of harmonic complex tones in primary auditory cortex of the awake monkey. Brain Research, 786, 18–30.

    PubMed  CAS  Google Scholar 

  • Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2004). Musical training enchances automatic encoding of melodic contour and interval structure, Journal of Cognitive Neuroscience, 16, 1010–1021.

    PubMed  Google Scholar 

  • Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2005). Automatic encoding of polyphonic melodies in musicians and non-musicians. Journal of Cognitive Neuroscience, 17, 1578–1592.

    PubMed  Google Scholar 

  • Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. J. (2006). One year of musical training affects development of auditory cortical-evoked fields in young children. Brain: A Journal of Neurology, 129, 2593–2593.

    Google Scholar 

  • Fujioka, T., Trainor, L., & Ross, B. (2008). Simultaneous pitches are encoded separately in auditory cortex: An MMN study. NeuroReport, 19, 361–366.

    PubMed  Google Scholar 

  • Fujioka, T., Mourad, N., & Trainor, L. J. (2011). Development of oscillatory neural networks and the auditory-specific tau rhythm in infancy. European Journal of Neuroscience, 33, 521–529.

    PubMed  Google Scholar 

  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23, 9240–9245.

    PubMed  CAS  Google Scholar 

  • Gerry, D., Unrau, A. J., & Trainor, L. J. (2010). Participation in active infant music classes accelerates acquisition of scale structure knowledge. Presented at the International Conference on Music Perception and Cognition, August 23–27, 2010, Seattle, WA.

    Google Scholar 

  • Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893–906.

    PubMed  Google Scholar 

  • He, C., & Trainor, L. J. (2009). Finding the pitch of the missing fundamental in infants. The Journal of Neuroscience, 29, 7718–7722.

    PubMed  CAS  Google Scholar 

  • He, C., Hotson, L., & Trainor. L. J. (2007). Mismatch responses to pitch changes in early infancy. Journal of Cognitive Neuroscience, 19, 878–892

    PubMed  Google Scholar 

  • He, C., Hotson, L., & Trainor, L. J. (2009). Maturation of cortical mismatch mismatch responses to occasional pitch change in early infancy: Effects of presentation rate and magnitude of change. Neuropsychologia, 47, 218–229.

    PubMed  Google Scholar 

  • Huron, D (2003). Is music an evolutionary adaptation? In I. Peretz & R. Zatorre (Eds.), The cognitive neuroscience of music (pp. 57–75). Oxford: Oxford University Press.

    Google Scholar 

  • Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Hutchinson, S., Lee, L. H., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13, 943–949.

    PubMed  Google Scholar 

  • Hyde, K. L., Zatorre, R. J., Griffiths, T. D., Lerch, J. P., & Peretz, I. (2006). Morphometry of the amusic brain: A two-site study. Brain, 129, 2562–2570.

    PubMed  Google Scholar 

  • Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C., & Peretz, I. (2007). Cortical thickness in congenital amusia: When less is better than more. The Journal of Neuroscience, 27, 13028–13032.

    PubMed  CAS  Google Scholar 

  • Hyde, K. L., Lerch, J. P., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. The Journal of Neuroscience, 29, 3019–3025.

    PubMed  CAS  Google Scholar 

  • Ilari, B., & Polka, L. (2006). Music cognition in early infancy: Infants’ preferences and long-term memory for Ravel. International Journal of Music Education, 24, 7–20.

    Google Scholar 

  • Janata, P. (2009). The neural architecture of music-evoked autobiographical memories. Cerebral Cortex, 19, 2579–2594.

    PubMed  Google Scholar 

  • Janata, P., Birk, J. L., Van Horn, J. D., Leman, M., Tillmann, B., & Bharucha, J. J. (2002). The cortical topography of tonal structures underlying Western music. Science, 298, 2167–2170.

    PubMed  CAS  Google Scholar 

  • Jentschke, S., & Koelsch, S. (2009). Musical training modulates the development of syntax processing in children. NeuroImage, 47, 735–744.

    PubMed  Google Scholar 

  • Kirschner, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31, 354–364.

    Google Scholar 

  • Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9, S78–S84.

    Google Scholar 

  • Koelsch, S., Gunter, T. C., & Friederici, A. D. (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 13, 520–541.

    Google Scholar 

  • Koelsch, S., Gunder, T. C., Schröger, E., Tervaniemi, M., Sammler, D., & Friederici, A. (2001). Differentiating ERAN and MMN: An ERP study. NeuroReport, 12, 1385–1389.

    PubMed  CAS  Google Scholar 

  • Koelsch, G., Gunter, T. C., Yves, D., von Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002a). Bach speaks: A cortical “language-network” serves the processing of music. NeuroImage, 17, 956–966.

    PubMed  Google Scholar 

  • Koelsch, S., Schmidt, B-H., & Kansok, J. (2002b). Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 39, 657–663.

    PubMed  Google Scholar 

  • Koelsch, S., Gunter, T., Schröger, E., & Friederici, A. D. (2003a). Processing tonal modulations: An ERP study. Journal of Cognitive Neuroscience, 13, 520–541.

    Google Scholar 

  • Koelsch, S., Grossman, T., Gunter, T. C., Hahne, A., Schröger, E., & Friederici, A. D. (2003b). Children processing music: Electric brain responses reveal musical competence and gender differences. Journal of Cognitive Neuroscience, 15, 683–693.

    PubMed  Google Scholar 

  • Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D. (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44, 476–490.

    PubMed  Google Scholar 

  • Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11, 599–605.

    Google Scholar 

  • Krumhansl, C. (1990). Cognitive foundations of musical pitch. Oxford: Oxford University Press.

    Google Scholar 

  • Krumhansl, C. L., & Cuddy, L. L. (2010). A theory of tonal hierarchies in music. In M. R. Jones, R. R. Fay, & A. N. Popper (Eds.), Music perception. New York: Springer.

    Google Scholar 

  • Krumhansl, C. L., & Keil, F. C. (1982). Acquisition of the hierarchy of tonal functions in music. Memory & Cognition, 10, 243–251.

    CAS  Google Scholar 

  • Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review, 89, 334–368.

    PubMed  CAS  Google Scholar 

  • Lappe, C., Herholz, S. C., Trainor, L. J., & Pantev, C. (2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. Journal of Neuroscience, 28, 9632–9639.

    PubMed  CAS  Google Scholar 

  • Leino, S., Brattico, E., Tervaniemi, M., & Vuust, P. (2007). Representation of harmony rules in the human brain: Further evidence from event-related potentials. Brain Research, 1142, 169–177.

    PubMed  CAS  Google Scholar 

  • Loui, P., Alsop, D., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? Journal of Neuroscience, 29, 10215–10220.

    PubMed  CAS  Google Scholar 

  • Lynch, M. P., & Eilers, R. E. (1991). Children’s perception of native and nonnative musical scales. Music Perception, 9, 121–132.

    Google Scholar 

  • Lynch, M. P., Eilers, R. E., Oller, D. K., & Urbano, R. C. (1990). Innateness, experience, and music perception. Psychological Science, 1, 272–276.

    Google Scholar 

  • Magne, C., Schon, D., & Besson, M. (2006). Musician children detect pitch violations in both music and language better than nonmusician children: Behavioral and electrophysiological approaches. Journal of Cognitive Neuroscience, 18, 199–211.

    PubMed  Google Scholar 

  • Masataka, N. (2006). Preference for consonance over dissonance by hearing newborns of deaf parents and of hearing parents. Developmental Science, 9, 46–50.

    PubMed  Google Scholar 

  • McDermott, J., & Hauser, M. D. (2005). The origins of music: Innateness, uniqueness and evolution. Music Perception, 23, 29–59.

    Google Scholar 

  • McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2010). Individual differences reveal the basis of consonance. Current Biology, 20, 1035–1041.

    PubMed  CAS  Google Scholar 

  • Meyer, L. B. (1956). Emotion and meaning in music. University of Chicago Press: Chicago.

    Google Scholar 

  • Moreno, S., & Besson, M. (2006). Musical training and language-related brain electrical activity in children. Psychophysiology, 43, 287–291.

    PubMed  Google Scholar 

  • Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the USA, 104, 15894–15898.

    PubMed  CAS  Google Scholar 

  • Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 2544–2590.

    PubMed  Google Scholar 

  • Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811–814.

    PubMed  CAS  Google Scholar 

  • Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport, 12, 169–174.

    PubMed  CAS  Google Scholar 

  • Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36, 767–776.

    PubMed  CAS  Google Scholar 

  • Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. Journal of Neuroscience, 24, 6810–6815.

    PubMed  CAS  Google Scholar 

  • Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308, 1430.

    PubMed  CAS  Google Scholar 

  • Phillips-Silver, J., & Trainor, L. J. (2007). Hearing what the body feels: Auditory encoding of rhythmic movement. Cognition, 105, 533–546.

    PubMed  Google Scholar 

  • Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000). Mismatch negativity: Different water in the same river. Audiology & Neurotology.Special Issue: Mismatch Negativity, 5, 111–139.

    CAS  Google Scholar 

  • Plantinga, J., & Trainor, L. J. (2005). Memory for melody: Infants use a relative pitch code. Cognition, 98, 1–11.

    PubMed  Google Scholar 

  • Plantinga, J., & Trainor, L. J. (2008). Infants’ memory for isolated tones and the effects of interference. Music Perception, 26, 121–127.

    Google Scholar 

  • Plantinga, J., & Trainor, L. J. (2009). Melody recognition by two-month-old infants. Journal of the Acoustical Society of America, 125, EL58–62.

    Google Scholar 

  • Plomp, R., & Levelt, W. J. M. (1965). Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America, 38, 548–560.

    PubMed  CAS  Google Scholar 

  • Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111, 220–236.

    PubMed  CAS  Google Scholar 

  • Ross, D. A., Olson, I. R., Marks, L. E., & Gore, J. C. (2004). A nonmusical paradigm for identifying absolute pitch possessors. The Journal of the Acoustical Society of America, 116, 1793–1799.

    PubMed  Google Scholar 

  • Saffran, J. R., & Griepentrog, G. J. (2001). Absolute pitch in infant auditory learning: Evidence for developmental reorganization. Developmental Psychology, 37, 74–85.

    PubMed  CAS  Google Scholar 

  • Saffran, J. R., Loman, M. M., & Robertson, R. R. W. (2000). Infant memory for musical experiences. Cognition, 77, 15–23.

    Google Scholar 

  • Schellenberg, E. G. (2005). Music and cognitive abilities. Current Directions in Psychological Science, 14, 322–325.

    Google Scholar 

  • Schellenberg, E. G., & Trainor, L. J. (1996). Sensory consonance and the perceptual similarity of complex-tone harmonic intervals: Tests of adult and infant listeners. Journal of the Acoustical Society of America, 100, 3321–3328.

    PubMed  CAS  Google Scholar 

  • Schellenberg, E. G., & Trehub, S. E. (2003). Good pitch memory is widespread. Psychological Science, 14, 262–266.

    PubMed  Google Scholar 

  • Schellenberg, E. G., Bigand, E., PoulinCharronnat, B., Garnier, C., & Stevens, C. (2005). Children’s implicit knowledge of harmony in western music. Developmental Science, 8, 551–566.

    PubMed  Google Scholar 

  • Schlaug, G. (2009). Music, musicians and brain plasticity. In S. Hallen, I. Cross, & M. Thaut (Eds.), Oxford handbook of music psychology (pp. 197–207). Oxford: Oxford University Press.

    Google Scholar 

  • Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688–694.

    PubMed  CAS  Google Scholar 

  • Schönwiesner, M., & Zatorre, R.J. (2008). Depth electrode recordings show double dissociation between pitch processing in lateral Heschl’s gyrus and sound onset processing in medial Heschl’s gyrus. Experimental Brain Research, 187, 97–105.

    Google Scholar 

  • Shahin, A., Bosnyak, D., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. Journal of Neuroscience, 23, 5545–5552.

    PubMed  CAS  Google Scholar 

  • Shahin, A., Roberts, L. E., & Trainor, L. J. (2004). Enhancement of auditory cortical development by musical experience in children. NeuroReport, 15, 1917–1921.

    PubMed  Google Scholar 

  • Shahin, A. J., Roberts, L. R., Chau, W., Trainor, L. J., & Miller, L. (2008). Musical training leads to the development of timbre-specific gamma band activity. NeuroImage, 41, 113–122.

    PubMed  Google Scholar 

  • Shepard, R. N. (1964). Circularity in judgments of relative pitch. Journal of the Acoustical Society of America, 36, 2346–2353.

    Google Scholar 

  • Shepard, R. N. (1965). Approximation to uniform gradients of generalization by monotone transformations of Scale. In D. I. Mostofsky (Ed.), Stimulus generalization. Stanford, CA: Stanford University Press

    Google Scholar 

  • Shepard, R. N. (1982). Geometrical approximations to the structure of musical pitch. Psychological Review, 89, 305–333.

    PubMed  CAS  Google Scholar 

  • Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., & Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. NeuroImage, 17, 1613–1622.

    PubMed  Google Scholar 

  • Smith, N. A., & Cuddy, L. L. (2003). Perceptions of musical dimensions in Beethoven’s Waldstein Sonata: An application of tonal pitch space theory. Musicae Scientiae, 7, 7–34.

    Google Scholar 

  • Speer, J. R., & Meeks, P. U. (1985). School children’s perception of pitch in music. Psychomusicology, 5, 49–56.

    Google Scholar 

  • Terhardt, E. (1974). Pitch, consonance, and harmony. Journal of the Acoustical Society of America, 55, 1061–1069.

    PubMed  CAS  Google Scholar 

  • Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., & Schröger, E. (2005). Pitch-discrimination accuracy in musicians vs. non-musicians—an event-related potential and behavioral study. Experimental Brain Research, 161, 1–10.

    Google Scholar 

  • Tew, S., Fujioka, T., He, C., & Trainor, L. (2009). Neural representation of transposed melody in infants at 6 months of age. Annals of the New York Academy of Sciences, 1169, 287–290.

    PubMed  Google Scholar 

  • Thompson, W. F., Graham, P., & Russo, F. A. (2005). Seeing music performance: Visual influences on perception and experience. Semiotica, 156, 203–227.

    Google Scholar 

  • Tillmann, B., Bigand, E., & Madurell, F. (1998). Local versus global processing of harmonic cadences in the solution of musical puzzles. Psychological Research, 61, 157–174.

    Google Scholar 

  • Tillmann, B., Bigand, E., Escoffier, N., & Lalitte, P. (2006). The influence of musical relatedness on timbre discrimination. European Journal of Cognitive Psychology, 18, 343–358.

    Google Scholar 

  • Trainor, L. J. (1996). Infant preferences for infant-directed versus noninfant-directed playsongs and lullabies. Infant Behavior and Development, 19, 83–92

    Google Scholar 

  • Trainor, L. J. (1997). The effect of frequency ratio on infants’ and adults’ discrimination of simultaneous intervals. Journal of Experimental Psychology: Human Perception and Performance, 23, 1427–1438.

    PubMed  CAS  Google Scholar 

  • Trainor, L. J. (2005). Are there critical periods for music development? Developmental Psychobiology, 46, 262–278.

    PubMed  Google Scholar 

  • Trainor, L. J. (2008a). The neural roots of music. Nature, 453, 598–599.

    PubMed  CAS  Google Scholar 

  • Trainor, L. J. (2008b). Event-related potential (ERP) measures in auditory developmental research. In L. A. Schmidt & S. J. Segalowitz (Eds.), Developmental psychophysiology: Theory, systems and methods (pp. 69–102). New York: Cambridge University Press.

    Google Scholar 

  • Trainor, L. J., & Corrigall, K. A. (2010). Music acquisition and the effects of musical experience. In M. R. Jones, R. R. Fay & A. N. Popper (Eds). Music perception. New York: Springer.

    Google Scholar 

  • Trainor, L. J., & Heinmiller, B. M. (1998). The development of evaluative responses to music: Infants prefer to listen to consonance over dissonance. Infant Behavior & Development, 21, 77–88.

    Google Scholar 

  • Trainor, L. J., & Trehub, S. E. (1992). A comparison of infants’ and adults’ sensitivity to Western musical structure. Journal of Experimental Psychology: Human Perception and Performance, 18, 394–402.

    PubMed  CAS  Google Scholar 

  • Trainor, L. J., & Trehub, S. E. (1993). What mediates adults’ and infants’ superior processing of the major triad? Music Perception, 11, 185–196.

    Google Scholar 

  • Trainor, L. J., & Trehub, S. E. (1994). Key membership and implied harmony in Western tonal music: Developmental perspectives. Perception & Psychophysics, 56, 125–132.

    CAS  Google Scholar 

  • Trainor, L. J., & Zacharias, C. A. (1998). Infants prefer higher-pitched singing. Infant Behavior and Development, 21, 799–805.

    Google Scholar 

  • Trainor, L. J., & Zatorre, R. (2009). The neurobiological basis of musical expectations: From probabilities to emotional meaning. In S. Hallen, I. Cross, & M. Thaut (Eds.), Oxford handbook of music psychology (pp. 171–182). Oxford: Oxford University Press.

    Google Scholar 

  • Trainor, L. J., Clark, E. D., Huntley, A., & Adams, B. (1997). The acoustic basis of preferences for infant-directed singing. Infant Behavior and Development, 20, 383–396.

    Google Scholar 

  • Trainor, L. J., Desjardins, R. N., & Rockel, C. (1999). A comparison of contour and interval processing in musicians and nonmusicians using event-related potentials. Australian Journal of Psychology Special Issue: Music as a Brain and Behavioural System, 51, 147–153.

    Google Scholar 

  • Trainor, L. J., McDonald, K. L., & Alain, C. (2002a). Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. Journal of Cognitive Neuroscience, 14, 430–442.

    PubMed  Google Scholar 

  • Trainor, L. J., Tsang, C. D., & Cheung, V. H. W. (2002b). Preference for consonance in 2- and 4-month-old infants. Music Perception, 20, 187–194.

    Google Scholar 

  • Trainor, L. J., Wu, L., & Tsang, C. D. (2004). Long-term memory for music: Infants remember tempo and timbre. Developmental Science, 7, 289–296.

    PubMed  Google Scholar 

  • Trainor, L. J., Shahin, A., & Roberts, L. E. (2009). Understanding the benefits of musical training: Effects on oscillatory brain activity. Annals of the New York Academy of Sciences, 1169, 133–142.

    PubMed  Google Scholar 

  • Trainor, L. J., Lee, K., & Bosnyak, D. J. (2011). Cortical plasticity in 4-month-old infants: Specific effects of experience with musical timbres. Brain Topogr, 24, 192–203.

    Google Scholar 

  • Tramo, M. J., Cariani, P. A., Delgutte, B., & Braida, L. D. (2001). Neurobiological foundations for the theory of harmony in western tonal music. In R. J. Zatorre, & I. Peretz (Eds.), The biological foundations of music (pp. 92–116). New York: New York Academy of Sciences.

    Google Scholar 

  • Trehub, S. E. (2009). Music lessons from infants. In S. Hallam, I. Cross, & M. Thaut (Eds.), Oxford handbook of music psychology (pp. 229–234). Oxford: Oxford University Press.

    Google Scholar 

  • Trehub, S. E., & Trainor, L. J. (1998). Singing to infants: Lullabies and playsongs. Advances in Infancy Research, 12, 43–77.

    Google Scholar 

  • Trehub, S. E., Bull, D., & Thorpe, L. A. (1984). Infants’ perception of melodies: The role of melodic contour. Child Development, 55, 821–830.

    PubMed  CAS  Google Scholar 

  • Trehub, S. E., Cohen, A. J., Thorpe, L. A., & Morrongiello, B. A. (1986). Development of the perception of musical relations: Semitone and diatonic structure. Journal of Experimental Psychology: Human Perception and Performance, 12, 295–301.

    PubMed  CAS  Google Scholar 

  • Trehub, S. E., Schellenberg, E. G., & Kamenetsky, S. B. (1999). Infants’ and adults’ perception of scale structure. Journal of Experimental Psychology: Human Perception and Performance, 25, 965–975.

    PubMed  CAS  Google Scholar 

  • Vaughn, K. (2000). Music and mathematics: Modest support for the oft-claimed relationship. Journal of Aesthetic Education, 34, 149–166.

    Google Scholar 

  • Volkova, A., Trehub, S. E., & Schellenberg, E. G. (2006). Infants’ memory for musical performances. Developmental Science, 9, 583–589.

    PubMed  Google Scholar 

  • Wallin, N. L., Merker, B., & Brown, S. (Eds.) (2000). The origins of music. Cambridge, MA: MIT Press.

    Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547–558.

    PubMed  CAS  Google Scholar 

  • Zentner, M. R., & Kagan, J. (1998). Infants’ perception of consonance and dissonance in music. Infant Behavior & Development, 21, 483–492.

    Google Scholar 

Download references

Acknowledgments

The writing of this chapter was supported by the Natural Sciences and Engineering Research Council of Canada, The Canadian Institutes of Health Research, the Canada Foundation for Innovation, and the Grammy Foundation. We thank Kathleen Corrigall for comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurel J. Trainor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Trainor, L.J., Unrau, A. (2012). Development of Pitch and Music Perception. In: Werner, L., Fay, R., Popper, A. (eds) Human Auditory Development. Springer Handbook of Auditory Research, vol 42. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1421-6_8

Download citation

Publish with us

Policies and ethics