Skip to main content

Flexible Nanometer CMOS Low-Noise Amplifiers for the Next-Generation Software-Defined-Radio Mobile Systems

  • Chapter
  • First Online:
Integrated Circuits for Analog Signal Processing

Abstract

This chapter reviews the main circuit strategies reported so far for the implementation of reconfigurable and adaptive CMOS Low-Noise Amplifiers (LNAs) intended for multi-standard wireless telecom systems. Different performance metrics are analyzed and compared, and a number of practical design considerations are given in order to optimize the performance of these kinds of LNAs in terms of Noise Figure (NF) and S-parameter programmability, with scalable power consumption. To this purpose, a circuit design methodology is presented which combines a mathematical model with electrical simulations. As an application of the proposed design methodology, a LNA Integrated Circuit (IC) implemented in a 1-V 90-nm CMOS technology is presented. The circuit consists of a two-stage inductively degenerated common-source configuration and uses MOS-varactor based tunning networks to make the resonant frequency continuously programmable within the band of interest. This allows the LNA to target the requirements of a number of commercial licensed standards, as well as any other operation modes in between. Practical implementation issues are discussed, considering the effect of circuit parasitics associated to both the chip package and integrated inductors, capacitors, varactors, as well as technology parameter deviations. Experimental results are presented to demonstrate the correct operation of the IC, showing a continuous tuning of NF and S-parameters within a 1.75–2.48 GHz band, and featuring {NF} < 3. 7 {dB}, S 21 > 19. 6 {dB} and {IIP3} > − 9. 8 {dBm} in a frequency range of 1.75–2.23 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This approximation is only valid if R b1, 2 ≫ 50Ω, as it is the case in this design.

References

  1. Brandolini M et al (2005) Toward multistandard mobile terminals - Fully integrated receivers requirements and architectures. IEEE Trans Microw Theor Tech 53:1026–1038

    Article  Google Scholar 

  2. Mak PI, Martins RP (2007) Transceiver architecture selection: review, state-of-the-art survey and case study. IEEE Circ Syst Mag, Second Quarter, pp. 6–25. (ISSN: 1531-636X)

    Google Scholar 

  3. Vidojkovic V et al (2004) Fully-integrated DECT/Bluetooth multi-band LNA in 0.18μm CMOS. Proceedings of IEEE international symposium on circuits and systems, pp 565–568

    Google Scholar 

  4. Koolivand Y et al (2005) A new technique for design CMOS LNA for multi-standard receivers. Proc IEEE Int Symp Circ Syst 4:3231–3234

    Article  Google Scholar 

  5. Hashemi H et al (2002) Concurrent multiband low-noise amplifiers-theory, design, and applications. IEEE Trans Microw Theor Tech 50:288–301

    Article  Google Scholar 

  6. Ang C-W et al (2007) A Multi-band CMOS Low Noise Amplifier for Multi-standard Wireless Receivers. Proceedings of IEEE international symposium on circuits and systems, pp 2802–2805

    Google Scholar 

  7. Hsieh H-H et al (2008) Gain-enhancement techniques for CMOS folded cascode LNAs at low-voltage operations. IEEE Trans Microw Theor Tech 56(8):1807–1816

    Article  Google Scholar 

  8. Ahola R (2004) A single-chip CMOS transceiver for IEEE 802.11a/b/g wireless LANs. Proc IEEE J Solid State Circ, pp 2250–2258

    Google Scholar 

  9. Li X, Ismail M (2002) Multi-standard CMOS wireless receivers: analysis and design. Kluwer Academic Publishers, New York

    Google Scholar 

  10. Li Z et al (2004) A dual-band CMOS front-end with two gain modes for wireless LAN applications. IEEE J Solid State Circ 39:2069–2073

    Article  Google Scholar 

  11. Wang C-S et al (2005) A multi-band multi-standard RF front-end IEEE 802.16a for IEEE 802.16a and IEEE 802.11 a/b/g applications. Proceedings of IEEE international symposium on circuits and systems (ISCAS), pp 3974–3977

    Google Scholar 

  12. Liscidini A et al (2006) A 0.13μm CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier. IEEE J Solid State Circ 41:981–989

    Article  Google Scholar 

  13. Wu C, Lu L (2006) A 2.9–3.5-GHz tunable low-noise amplifier. Proceedings of the 2006 IEEE silicon monolithic integrated circuits in RF systems (SiRF), pp 206–209

    Google Scholar 

  14. Zhan J-H et al (2006) A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications. Proceedings of IEEE solid-state circuits conference, pp 721–730

    Google Scholar 

  15. Martins M et al (2007) Techniques for dual-band LNA design using cascode switching and inductor magnetic coupling. Proceedings of IEEE international symposium on circuits and systems (ISCAS), pp 1449–1452

    Google Scholar 

  16. Vidojkovic M et al (2007) A broadband, inductorless LNA for multi-standard applications. Proceedings of European conference on circuit theory and design, pp 260–263

    Google Scholar 

  17. Shaeffer D et al (1997) A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J Solid State Circ 32:745–759

    Article  Google Scholar 

  18. Song H et al (2008) A Sub-2 dB NF Dual-Band CMOS LNA for CDMA/WCDMA Applications. IEEE Microw Wireless Compon Lett 18:212–214

    Article  Google Scholar 

  19. Tividis Y (2003) Operation and modelling of the MOS transistor, 2nd edn. Oxford Press, New York

    Google Scholar 

  20. Lee TH (2004) The design of CMOS radio-frequency integrated circuits, 2nd edn. Cambrige University Press, Cambridge

    Google Scholar 

  21. Abou-Allam E et al (2001) Low-voltage 1.9-GHz front-end receiver in 0.5-μm CMOS technology. IEEE J Solid State Circ 36:1434–1443

    Article  Google Scholar 

  22. Hioe W et al (2004) 0.18μm CMOS Bluetooth analog receiver with -88-dBm sensitivity. IEEE J Solid State Circ 39:374–377

    Article  Google Scholar 

  23. Jarvinen J et al (2004) 2.4-GHz receiver for sensor applications. Proceedings of the European solid-state circuits conference, pp 91–94

    Google Scholar 

  24. Komurasaki H et al (2003) A 1.8-V operation RF CMOS transceiver for 2.4-GHz-band GFSK applications. IEEE J Solid State Circ 38:817–825

    Article  Google Scholar 

  25. Rogin J et al (2003) A 1.5-V 45-mW direct-conversion WCDMA receiver IC in 0.13μm CMOS. IEEE J Solid State Circ 38:2239–2248

    Article  Google Scholar 

  26. Sjoland H et al (2003) A merged CMOS LNA and mixer for a WCDMA receiver. IEEE J Solid State Circ 38:1045–1050

    Article  Google Scholar 

  27. Sivonen P et al (2006) A 1.2-V RF front-end with on-chip VCO for PCS 1900 direct conversion receiver in 0.13μm CMOS. IEEE J Solid State Circ 41:384–394

    Article  Google Scholar 

  28. Tiebout M et al (2002) LNA design for a fully integrated CMOS single chip UMTS transceiver. Proceedings of the European solid-state circuits conference, pp 835–838

    Google Scholar 

  29. Yang Y-C et al (2006) Reconfigurable SiGe low-noise amplifiers with variable miller capacitance. IEEE Trans Circ Syst 53:2567–2577

    Article  Google Scholar 

  30. Andreani P et al (2001) Noise optimization of an inductively degenerated CMOS low noise amplifier. IEEE Trans Circ Syst II: Analog and Digit Signal Process 48:835–841

    Article  Google Scholar 

  31. Hsiao C-L et al (2003) A 1V fully differential CMOS LNA for 2.4GHZ application. Proceedings of the 2003 international symposium on circuits and systems (ISCAS), vol 1, pp 245–248

    Google Scholar 

  32. Cha C-Y et al (2002) A 5.2GHz LNA in 0.35μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance. Proceedings of the European solid-state circuits conference, pp 339–342

    Google Scholar 

  33. Cha C-Y et al (2003) A 5.2-GHz LNA in 0.35μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance. IEEE J Solid State Circ 38:669–672

    Article  Google Scholar 

  34. Dupuis O et al (2005) 24GHz LNA in 90nm RF-CMOS with high-Q above-IC inductors. Proceedings of the European solid-state circuits conference, pp 89–92

    Google Scholar 

  35. Fujimoto R et al (2002) A 7-GHz 1.8-dB NF CMOS low-noise amplifier. IEEE J Solid State Circ 37:852–856

    Article  Google Scholar 

  36. Goo J-S et al (2002) A noise optimization technique for integrated low-noise amplifiers. IEEE J Solid State Circ 37:994–1002

    Article  Google Scholar 

  37. Han K et al (2005) Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier. IEEE J Solid State Circ 40:726–735

    Article  Google Scholar 

  38. Linten D et al (2004) A 5 GHz fully integrated ESD-protected low-noise amplifier in 90nm RF CMOS. Proceedings of the European solid-state circuits conference, pp 291–294

    Google Scholar 

  39. Linten D et al (2005) A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS. IEEE J Solid State Circ 40:1434–1442

    Article  Google Scholar 

  40. White JF (2004) High frequency techniques - An introduction to RF and microwave engineering. Wiley, Hoboken

    Google Scholar 

  41. Everard J (2001) Fundamentals of RF circuit design with low noise oscillators. Wiley, Chichester

    Google Scholar 

  42. Leenaerts D et al (2001) Circuit design for RF transceivers. Kluwer Academic Publishers, Boston

    Google Scholar 

  43. Stenman A-K (2001) Some design aspects on RF CMOS LNAs and mixers. PhD thesis, Lund University

    Google Scholar 

  44. Fu C-T et al (2007) A 2.4 to 5.4 GHz low power CMOS reconfigurable LNA for multistandard wireless receiver. Proceedings of IEEE radio frequency integrated circuits symposium, pp 65–68

    Google Scholar 

  45. Wu C-R et al (2006) A 2.9–3.5-GHz tunable low-noise amplifier. Topical meeting on silicon monolithic integrated circuits in RF systems, pp 206–209

    Google Scholar 

  46. Kao S-W et al (2005) A low-power dual-band WLAN CMOS receiver. Proceedings of Asian solid-state circuits conference, pp 397–400

    Google Scholar 

  47. Tzeng F et al (2008) A multiband inductor-reuse CMOS low-noise amplifier. IEEE Trans Circ Syst II: Express Briefs 55:209–213

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. de la Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Becerra-Alvarez, E.C., Sandoval-Ibarra, F., de la Rosa, J.M. (2013). Flexible Nanometer CMOS Low-Noise Amplifiers for the Next-Generation Software-Defined-Radio Mobile Systems. In: Tlelo-Cuautle, E. (eds) Integrated Circuits for Analog Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1383-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1383-7_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1382-0

  • Online ISBN: 978-1-4614-1383-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics