Skip to main content

Marine Bioactive Peptides and Protein Hydrolysates: Generation, Isolation Procedures, and Biological and Chemical Characterizations

Protein and Peptides from Marine Byproducts

  • Chapter
  • First Online:
Marine Bioactive Compounds
  • 2614 Accesses

Abstract

Fish resources are limited, and there is therefore a need to optimize utilization of the catch. In Norway, by-products are defined as products that are not regarded as ordinary saleable products (fillet, round, eviscerated, or beheaded fish), but which can be recycled after treatment. Waste includes products that cannot be used for feed or value-added products, but which have to be composted, burned, or destroyed (Bekkevold, S., and T. Olafsen. 2007. Råvarer med muligheter. Trondheim: RUBIN AS). The E.C. regulation on animal by-products (EC Nr 1774/2002), adopted on 3 October 2002, defines animal by-products as whole carcasses or parts of animals or products not intended for human consumption. Marine by-products intended for human consumption are not included in this definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler-Nissen, J. 1984. Control of the proteolytic reaction and of the level of bitterness in protein hydrolysis processes. Journal of Chemical Technology and Biotechnology 34B: 215–222.

    CAS  Google Scholar 

  • Adler-Nissen, J., and H.S. Olsen. 1979. The influence of peptide chain length on taste and functional properties of enzymatically modified soy protein. Functionality and protein structure. A. Pour-El. Washington, DC: American Chemical Society Symposium Series 92.

    Google Scholar 

  • Adler-Nissen, J., and H.W. Olsen. 1992. Functionality and protein structure. A. Pour-El. Washington, DC: American Chemical Society. 92.

    Google Scholar 

  • Ait-Yahia, D., Madani, S., Sawelli, J. L., Prost, J., Bouchenak, M., Belleville, J., (2003). Dietary fish proteins lowers blood pressure and alter tissue polyunsaturate fatty acid composition in spontaneously hypertensive rats. nutrition, 19, 4, 324–346.

    Google Scholar 

  • Amarowicz, R., and F. Shahidi. 1997. Antioxidant activity of peptide fractions of capelin protein hydrolysates. Food Chemistry 58: 355–359.

    Article  CAS  Google Scholar 

  • Aneiros, A., and A. Garateix. 2004. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. Journal of Chromatography B 803(1): 41–53.

    Article  CAS  Google Scholar 

  • Arihara, K., Y. Nakashima, et al. 2001. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Science 57(3): 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Aspmo, S.I., S.J. Horn, et al. 2005. Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochemistry 40(12): 3714–3722.

    Article  CAS  Google Scholar 

  • Bekkevold, S., and T. Olafsen. 2007. Råvarer med muligheter. Trondheim: RUBIN AS.

    Google Scholar 

  • Belitz, H.D., and H. Wieser. 1976. Steric arrangement of sweet and bitter taste of amino acids and peptides. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 160(3): 251–253.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, I.W.Y., A.M. Liceaga, et al. 2009. Pacific hake (merluccius productus) hydrolysates as cryoprotective agents in frozen pacific cod fillet mince. Journal of Food Science 74(8): C588–C594.

    Article  PubMed  CAS  Google Scholar 

  • Cudennec, B., R. Ravallec-Plé, et al. 2008. Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells. Food Chemistry 111(4): 970–975.

    Article  CAS  Google Scholar 

  • Damodaran, S. 1997. Food proteins: an overview. In Food proteins and their applications, ed. S. Damodaran and A. Paraf, 1–24. New York: Marcel Dekker.

    Google Scholar 

  • Dauksas, E., R. Slizyte, et al. 2004. Bitterness in fish protein hydrolysates and methods for removal. Journal of Aquatic Food Product Technology 13(2): 101–114.

    Article  CAS  Google Scholar 

  • Dauksas, E., E. Falch, et al. 2005. Composition of fatty acids and lipid classes in bulk products generated during enzymic hydrolysis of cod (Gadus morhua) by-products. Process Biochemistry 40(8): 2659–2670.

    Article  CAS  Google Scholar 

  • Docmar (2007) “Delprosjekt: Peptide.”

    Google Scholar 

  • Falch, E., T. Rustad, et al. 2006. Geographical and seasonal differences in lipid composition and relative weight of by-products from gadiform species. Journal of Food Composition and Analysis 19(6–7): 727–736.

    Article  CAS  Google Scholar 

  • Fleurence, J. 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology 10(1): 25–28.

    Article  CAS  Google Scholar 

  • Fouchereau-Peron, M., L. Duvail, et al. 1999. Isolation of an acid fraction from a fish protein hydrolysate with a calcitonin-gene-related-peptide-like biological activity. Biotechnology and Applied Biochemistry 29: 87–92.

    PubMed  CAS  Google Scholar 

  • Fujita, H., Yamagami, Tomohide, B.S., Kanzunori, O., Effect of an ace-inhibitory agent, katsuobushi oligopeptide, in spontanously hypertensive rat and in borderline and mildly hypertensive subjects (2001). nutrition Research, 21, 8, 1149–1158.

    Article  CAS  Google Scholar 

  • Gildberg, A., J.A. Arnesen, et al. 2002. Utilisation of cod backbone by biochemical fractionation. Process Biochemistry 38(4): 475–480.

    Article  CAS  Google Scholar 

  • Guerard, F.G., Fabienne, D. Sellos, et al. Enzymatic methods for marine by-products recovery, Fish and Shellfish Upgrading, Traceability. Maximising the value of marine by-products, Marine Biotechnology I. F. Shahidi, Roland and Y. Le Gal: 107-143127-143163.

    Google Scholar 

  • Guerard, F., N. Decourcelle, C. Sabourin, C. Floch-Laizet, L. Le Grel, P. Le Floch, F. Gourlay, R. Le Delezir, P. Jaquen, and P. Bourseau. 2010. Recent developments of marine ingredients for food and nutraceutical applications: a review. J Sci Hal Aquat 2: 21–27.

    Google Scholar 

  • Guérard, F., D. Sellos, et al. 2005. Fish and shellfish upgrading, traceability. Advances in Biochemical Engineering/Biotechnology 96: 127–163.

    Article  PubMed  Google Scholar 

  • Gutierrez, M.E., A.F. Garcia, et al. 2003. Interaction of tocopherols and phenolic compounds with membrane lipid components: evaluation of their antioxidant activity in a liposomal model system. Life Sciences 72(21): 2337–2360.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, J.-S. 2010. Impact of processing on stability of angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from tuna cooking juice. Food Research International 43(3): 902–906.

    Article  CAS  Google Scholar 

  • Jang, A., and M. Lee. 2005. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Science 69(4): 653–661.

    Article  PubMed  CAS  Google Scholar 

  • Je, J.Y., K.H. Lee, et al. 2009. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International 42(9): 1266–1272.

    Article  CAS  Google Scholar 

  • Jeon, Y.J., H.G. Byun, et al. 2000. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochemistry 35(5): 471–478.

    Article  CAS  Google Scholar 

  • Jung, W.K., P.J. Park, et al. 2003. Purification and characterization of a new lectin from the hard roe of skipjack tuna, Katsuwonus pelamis. The International Journal of Biochemistry & Cell Biology 35(2): 255–265.

    Article  CAS  Google Scholar 

  • Kahlon, T.S., and C.L. Woodruff. 2002. In vitro binding of bile acids by soy protein, pinto beans, black beans and wheat gluten. Food Chemistry 79(4): 425–429.

    Article  CAS  Google Scholar 

  • Kawasaki, T., E. Seki, et al. 2000. Antihypertensive effect of Valyl-Tyrosine, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects. Journal of Human Hypertension 14(8): 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, T.C.J., Y. Jun, et al. 2002. Antihypertensive effect and safety evaluation of vegetable drink with peptides derived from sardine protein hydrolysates on mild hypertensive, high-normal blood pressure subjects. Fukuoka Igaku Zasshi 93(10): 208–218.

    PubMed  CAS  Google Scholar 

  • Kerry, J.P., and S.C. Murphy. 2007. Physical and chemical properties of lipid by-products from seafood waste. In Maximising the value of marine by-products, ed. F. Shahidi, 22–46. Cambridge: Woodhead.

    Chapter  Google Scholar 

  • Khan, M.A., M.A. Hossain, et al. 2003. Effect of enzymatic fish protein hydrolysate from fish scrap on the state of water and denaturation of lizard fish (Saurida wanieso) myofibrils during dehydration. Food Science and Technology Research 9(3): 257–263.

    Article  CAS  Google Scholar 

  • Khantaphant, S., S. Benjakul, et al. 2011. Antioxidative and ACE inhibitory activities of protein hydrolysates from the muscle of brownstripe red snapper prepared using pyloric caeca and commercial proteases. Process Biochemistry 46(1): 318–327.

    Article  CAS  Google Scholar 

  • Kim, S.-K., and E. Mendis. 2006. Bioactive compounds from marine processing byproducts – a review. Food Research International 39(4): 383–393.

    Article  CAS  Google Scholar 

  • Kim, J.-S., and J.W. Park. 2007. Mince from seafood processing by-product and surimi as food ingredient. In Maximising the value of marine by-products, ed. F. Shahidi, 196–228. Cambridge: Woodhead.

    Google Scholar 

  • Kim, S.-K., and I. Wijesekara. 2010. Development and biological activities of marine-derived bioactive peptides: a review. Journal of Functional Foods 2(1): 1–9.

    Article  CAS  Google Scholar 

  • Kinsella, J.E. 1976a. Functional properties of food proteins: a survey. CRC Critical Reviews in Food Science and Nutrition 7: 219–280.

    Article  CAS  Google Scholar 

  • Kinsella, J.E. 1976b. Functional properties of proteins in food: a survey. Critical Reviews in Food Science and Nutrition 8: 219–280.

    Google Scholar 

  • Klompong, V., S. Benjakul, et al. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry 102(4): 1317–1327.

    Article  CAS  Google Scholar 

  • Klompong, V., S. Benjakul, et al. 2008. Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from alcalase and flavourzyme. International Journal of Food Science and Technology 43(6): 1019–1026.

    Article  CAS  Google Scholar 

  • Kristinsson, H.G. 2007a. Aquatic food protein hydrolysates. In Maximising the value of marine by-products, ed. F. Shahidi. Cambridge: Woodhead.

    Google Scholar 

  • Kristinsson, H.G. 2007b. Aquatic food protein hydrolysates. In Maximising the value of marine by-products, ed. F. Shahidi. Cambridge: Woodhead.

    Google Scholar 

  • Kristinsson, H.G., and B.A. Rasco. 2000a. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry 48(3): 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Kristinsson, H.G., and B.A. Rasco. 2000b. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry 48(3): 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Kristinsson, H.G., and B.A. Rasco. 2000c. Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition 40(1): 43–81.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.W., M. Shimizu, et al. 1987. Emulsifying properties of peptides obtained from the hydrolysates of b-casein. Agricultural and Biological Chemistry 51: 1661–1666.

    Google Scholar 

  • Liaset, B., and M. Espe. 2008. Nutritional composition of soluble and insoluble fractions obtained by enzymatic hydrolysis of fish-raw materials. Process Biochemistry 43(1): 42–48.

    Article  CAS  Google Scholar 

  • Mackie, I.M. (1974). Proteolytic enzymes in recovery of proteins from fish waste. Process biochemistry, 9, 12–14.

    CAS  Google Scholar 

  • Mahmoud, M.I. 1994. Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technology 48: 89–94.

    CAS  Google Scholar 

  • Mohr, V. 1979. Enzymes technology in the meat and fisheries industries. Paris: The International Microbiology and Food industry Congress.

    Google Scholar 

  • Naqash, S.Y., and R.A. Nazeer. 2011. Evaluation of bioactive properties of peptide isolated from Exocoetus volitans backbone. International Journal of Food Science & Technology 46(1): 37–43.

    Article  CAS  Google Scholar 

  • Pastoriza, L., Sampedro, S., Cabo, M. L., Herrera, J.J.R. & Bernardez, M. (2004). Solubilisation of proteins from rayfish residues by endogenous and commercial enzymes. Journal of the Science of food and Agric 84, 83–8.

    Article  CAS  Google Scholar 

  • Pei, X., R. Yang, et al. 2010. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6 J mice. Food Chemistry 118(2): 333–340.

    Article  CAS  Google Scholar 

  • Picot, L., S. Bordenave, et al. 2006. Antiproliferative activity of fish protein hydrolysates on human breast cancer cell lines. Process Biochemistry 41(5): 1217–1222.

    Article  CAS  Google Scholar 

  • Quaglia, G.B., and E. Orban. 1990. Influence of enzymatic-hydrolysis on structure and emulsifying properties of sardine (Sardina-Pilchardus) protein hydrolysates. Journal of Food Science 55(6): 1571–1573.

    Article  CAS  Google Scholar 

  • Rajapakse, N., W.K. Jung, et al. 2005. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sciences 76(22): 2607–2619.

    Article  PubMed  CAS  Google Scholar 

  • Rustad, T. 2007. Physical and chemical properties of protein seafood by-products. In Maximising the value of marine by-products, ed. F. Shahidi, 3–21. Cambridge: Woodhead.

    Chapter  Google Scholar 

  • Samaranayaka, A.G.P., and E.C.Y. Li-Chan. 2008. Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chemistry 107(2): 768–776.

    Article  CAS  Google Scholar 

  • Shahidi, F. 1994. Seafood processing by-products. In Seafoods chemistry, ed. F. Shahidi and J.R. Botta. London: Blackie Academic & Professional.

    Google Scholar 

  • Shahidi, F., X.Q. Han, et al. 1995a. Production and characteristics of protein hydrolysates from capelin (Mallotus-Villosus). Food Chemistry 53(3): 285–293.

    Article  CAS  Google Scholar 

  • Shahidi, F., X.Q. Han, et al. 1995b. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry 53(3): 285–293.

    Article  CAS  Google Scholar 

  • Skjævestad, B. 2010. Muligheter for marine proteiningredienser i det amerikanske helse- og ernæringsmarkedet, RUBIN. 186.

    Google Scholar 

  • Slizyte, R., E. Dauksas, et al. 2005a. Characteristics of protein fractions generated from hydrolysed cod (Gadus morhua) by-products. Process Biochemistry 40(6): 2021–2033.

    Article  CAS  Google Scholar 

  • Slizyte, R., E. Dauksas, et al. 2005b. Characteristics of protein fractions generated from hydrolysed cod (Gadus morhua) by-products. Process Biochemistry 40(6): 2021–2033.

    Article  CAS  Google Scholar 

  • Slizyte, R., T. Rustad, et al. 2005c. Enzymatic hydrolysis of cod (Gadus morhua) by-products: optimization of yield and properties of lipid and protein fractions. Process Biochemistry 40(12): 3680–3692.

    Article  CAS  Google Scholar 

  • Slizyte, R., R. Mozuraityte, et al. 2009a. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry 44(6): 668–677.

    Article  CAS  Google Scholar 

  • Slizyte, R., R. Mozuraityte, et al. 2009b. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry 44: 668–677.

    Article  CAS  Google Scholar 

  • Spinelli, J., B. Koury, et al. 1972. Approaches to the utilisation of fish for the preparation of protein isolates; enzymatic modification of myofibrillal fish proteins. Journal of Food Science 37: 604–608.

    Article  CAS  Google Scholar 

  • Sugiyama, K., M. Egawa, et al. 1991. Characteristics of sardine muscle hydrolysates prepared by various enzymatic treatments. Nippon Suisan Gakkaishi 57(3): 475–479.

    Article  CAS  Google Scholar 

  • Suh, H.J., S.H. Bae, et al. 2000. Debittering of corn gluten hydrolysate with active carbon. Journal of the Science of Food and Agriculture 80(5): 614–618.

    Article  CAS  Google Scholar 

  • Thorkelsson, G., and H.G. Kristinsson. 2009. Bioactive peptides from marine sources. State of art. Report to the NORA fund. Skýrsla Matís14-09: 19.

    Google Scholar 

  • Thorkelsson, G., S. Sigurgisladottir, et al. 2008. Mild processing techniques and development of functional marine protein and peptide ingredients. In Improving seafood products for the consumer, ed. T. Børresen, 363–398. Cambridge: Woodhead.

    Chapter  Google Scholar 

  • Thorkelsson, G., R. Slizyte, et al. 2009. Fish proteins and peptide products:processing methods, quality and functional properties. In Marine functional food, ed. J.B. Luten, 115–139. Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Thormodsen, T. 2009. Industriell utvikling av peptoner fra biråstoff av laks. Will find: RUBIN.

    Google Scholar 

  • Torres, J.A., Y.C. Chen, et al. 2007. Recovery of by-products from seafood processing streams. In Maximising the value of marine by-products, ed. F. Shahidi, 65–90. Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Undeland, I., H.O. Hultin, et al. 2003. Aqueous extracts from some muscles inhibit hemoglobin-mediated oxidation of cod muscle membrane lipids. Journal of Agricultural and Food Chemistry 51(10): 3111–3119.

    Article  PubMed  CAS  Google Scholar 

  • Undeland, I., H. Lindqvist, et al. 2009a. Seafood and health: what is the full story? In Marine functional food, ed. J.B. Luten. Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Undeland, I., H. Linquist, et al. 2009b. Seafood and health: what is the full story? In Marine functional food, ed. J.B. Luten, 17–87. Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Vareltzis, K., N. Soultos, et al. 1990. Proximate composition and quality of a hamburger type product made from minced beef and fish-protein concentrate. Lebensmittel-Wissenschaft & Technologie 23(2): 112–116.

    Google Scholar 

  • Vercruysse, L., J. Van Camp, et al. 2005. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: a review. Journal of Agricultural and Food Chemistry 53(21): 8106–8115.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., K. Agyare, et al. 2009. Optimisation of hydrolysis conditions and fractionation of peptide cryoprotectants from gelatin hydrolysate. Food Chemistry 115(2): 620–630.

    Article  CAS  Google Scholar 

  • Yang, J.L., H.Y. Ho, et al. 2008. Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chemistry 110(1): 128–136.

    Article  CAS  Google Scholar 

  • You, L., M. Zhao, et al. 2011. In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chemistry 124(1): 188–194.

    Article  CAS  Google Scholar 

  • Zhang, N., Y. Yamashita, et al. 2002. Effect of protein hydrolysate from antarctic krill on the state of water and denaturation of lizard fish myofibrils during frozen storage. Food Science and Technology Research 8(3): 200–206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turid Rustad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rustad, T., Hayes, M. (2012). Marine Bioactive Peptides and Protein Hydrolysates: Generation, Isolation Procedures, and Biological and Chemical Characterizations. In: Hayes, M. (eds) Marine Bioactive Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1247-2_3

Download citation

Publish with us

Policies and ethics