Skip to main content

Regulation of Ion Channels by Secreted Klotho

  • Chapter
Book cover Endocrine FGFs and Klothos

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 728))

Abstract

Klotho is an anti-aging protein predominantly expressed in the kidney, parathyroid glands and choroid plexus of the brain. Klotho exists in two forms, a membrane form and a soluble secreted form. Recent studies show that the secreted Klotho possess sialidase activity and regulates several ion channels via the activity. Removal of terminal sialic acids from N-glycan chains of the epithelial Ca2+ channel TRPV5 and the renal K+ channel ROMK by secreted Klotho exposes the underlying disaccharide galactose-N-acetylglucosamine, a ligand for galectin-1. Binding to galectin-1 at the extracellular surface prevents internalization and leads to accumulation of the channels on the plasma membrane. Future studies will investigate whether secreted Klotho regulates cell-surface expression of other membrane glycoproteins via the same mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuro-o M, Matsumura Y, Aizawa H et al. Mutation of the mouse klotho gene leads to a syndrome resembling aging. Nature 1997; 390:45–51.

    Article  PubMed  CAS  Google Scholar 

  2. Kurosu H, Yamamoto M, Clark JD et al. Suppression of aging in mice by the hormone Klotho. Science 2005; 309:1829–1833.

    Article  PubMed  CAS  Google Scholar 

  3. Chen CD, Podvin S, Gillespie E et al. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA 2007; 104:19796–19801.

    Article  PubMed  CAS  Google Scholar 

  4. Imura A, Iwano A, Tohyama O et al. Secreted Klotho protein in sera and CSF: implication for posttranslational cleavage in release of Klotho protein from cell membrane. FEBS Lett 2004; 565:143–147.

    Article  PubMed  CAS  Google Scholar 

  5. Ito S, Fujimori T, Hayashizaki Y et al. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim Biophys Acta 2002; 1576:341–345.

    PubMed  CAS  Google Scholar 

  6. Rye CS, Withers SG. Glycosidase mechanisms. Curr Opin Chem Biol 2000; 4:573–580.

    Article  PubMed  CAS  Google Scholar 

  7. Tohyama O, Imura A, Iwano A et al. Klotho is a novel β-glucuronidase capable of hydrolyzing steroid β-glucuronides. J Biol Chem 2004; 279:9777–9784.

    Article  PubMed  CAS  Google Scholar 

  8. Chang Q, Hoefs S, van der Kemp AW et al. The β-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 2005; 310:490–493.

    Article  PubMed  CAS  Google Scholar 

  9. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007; 446:1030–1037.

    Article  PubMed  CAS  Google Scholar 

  10. Demetriou M, Granovsky M, Quaggin S et al. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 2001; 409:733–739.

    Article  PubMed  CAS  Google Scholar 

  11. Partridge EA, Le Roy C, Di Guglielmo GM et al. Regulation of cytokine receptors by Golgi N-glycans processing and endocytosis. Science 2004; 306:120–124.

    Article  PubMed  CAS  Google Scholar 

  12. Stanley P. A method to the madness of N-glycan complexity? Cell 2007; 129:27–29.

    Article  PubMed  CAS  Google Scholar 

  13. Cha SK, Ortega B, Kurosu H et al. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 2008; 105:9805–9810.

    Article  PubMed  CAS  Google Scholar 

  14. Schauer R. Biosynthesis and function of N-and O-substituted sialic acids. Glycobiology 1991; 1:449–452.

    Article  PubMed  CAS  Google Scholar 

  15. Patel RY, Balaji PV. Identification of linkage-specific sequence motifs in sialyltransferases. Glycobiology 2006; 16:108–116.

    Article  PubMed  CAS  Google Scholar 

  16. Barondes SH, Cooper DN, Gitt MA et al. Galectins: Structure and function of a large family of animal lectins. J Biol Chem 1994; 269:20807–20810.

    PubMed  CAS  Google Scholar 

  17. Leppanen A, Stowell S, Blixt O et al. Dimeric galectin-1 binds with high affinity to α2,3-sialylated and nonsialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J Biol Chem 2005; 280:5549–5562.

    Article  PubMed  Google Scholar 

  18. Cha SK, Hu MC, Kurosu H et al. Reguation of ROMK1 channel and renal K+ excretion by Klotho. Mol Pharmacol 2009; 76:38–46.

    Article  PubMed  CAS  Google Scholar 

  19. Zeng WZ, Babich V, Ortega B et al. Evidence for endocytosis of ROMK potassium channels via clathrin-coated vesicles. Am J Physiol 2002; 283:F630–F639.

    Google Scholar 

  20. Cha SK, Wu T, Huang CL. Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. Am J Physiol Renal Physiol 2008; 294:F1212–F1221.

    Article  PubMed  CAS  Google Scholar 

  21. Ohtsubo K, Takamatsu S, Minowa MT et al. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 2005;123:1307–1321.

    Article  PubMed  CAS  Google Scholar 

  22. Lau KS, Partridge EA, Grigorian A et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 2007; 129:123–134.

    Article  PubMed  CAS  Google Scholar 

  23. Valera A, Solanes G, Fernández-Alvarez J et al. Expression of GLUT-2 antisense RNA in beta cells of transgenic mice leads to diabetes. J Biol Chem 1994; 269:28543–28546.

    PubMed  CAS  Google Scholar 

  24. Nabeshima Y. Toward a better understanding of Klotho. Sci Aging Knowledge Environ 2006; 8:pe11.

    Article  Google Scholar 

  25. Kurosu H, Ogawa Y, Miyoshi M et al. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem 2006; 281:6120–6123.

    Article  PubMed  CAS  Google Scholar 

  26. Urakawa I, Yamazaki Y, Shimada T et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444:770–774.

    Article  PubMed  CAS  Google Scholar 

  27. Cha SK, Kuroo M, Huang CL. The anti-aging hormone Klotho regulates cell surface abundance of TRPC6. J Am Soc Nephrol 2009; In press.

    Google Scholar 

  28. Dietrich A, Gudermann T. TRPC6. Handb Exp Pharmacol 2007; 179:125–141.

    Article  PubMed  CAS  Google Scholar 

  29. Kurosu H, Kuro-o M. The Klotho gene family and the endocrine fibroblast growth factors. Curr Opin Nephrol Hypertens 2008; 17:368–372.

    Article  PubMed  CAS  Google Scholar 

  30. Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol 2007; 194:1–10.

    Article  PubMed  CAS  Google Scholar 

  31. Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 2002; 143:683–689.

    Article  PubMed  CAS  Google Scholar 

  32. Tsuruoka S, Nishiki K, Ioka T et al. Defect in parathyroid-hormone-induced luminal calcium absorption in connecting tubules of Klotho mice. Nephrol Dial Transplant 2006; 21:2762–2767.

    Article  PubMed  CAS  Google Scholar 

  33. Alexander RT, Woudenberg-Vrenken TE, Buurman J et al. Klotho Prevents Renal Calcium Loss. J Am Soc Nephrol 2009; (Epub)

    Google Scholar 

  34. Winn MP, Conlon PJ, Lynn KL et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005; 308:1801–1804.

    Article  PubMed  CAS  Google Scholar 

  35. Kuwahara K, Wang Y, McAnally J et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 2006; 116:3114–3126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Huang, CL. (2012). Regulation of Ion Channels by Secreted Klotho. In: Kuro-o, M. (eds) Endocrine FGFs and Klothos. Advances in Experimental Medicine and Biology, vol 728. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0887-1_7

Download citation

Publish with us

Policies and ethics