Skip to main content

Residual Microstructure - Mechanical Property Relationships in Shock-Loaded Metals and Alloys

  • Chapter
Shock Waves and High-Strain-Rate Phenomena in Metals

Abstract

This chapter reviews the results of a large number of shook loading experiments utilizing a common design and a constant shock pulse duration of 2 µs. It is shown that dislocations, dislocation cells, planar dislocation arrays, stacking faults, twins, twin faults, and point defects all contribute in specific systems to residual shock strengthening. Shock-induced microstructures are determined primarily by the stacking fault free energy. High stacking-fault free energy metals and alloys are characterized by dislocation cell structures while low stacking-fault free energy metals and alloys (with the fcc structure) are characterized by planar dislocation arrays, stacking faults and twins in {111} planes. High stacking-fault free energy metals and alloys also twin according to critical shear stress criteria, and the (001) orientation is the initial orientation where twinning occurs. Residual shock microstructures and specific lattice defects induced by the peak shock pressure are shown to be related to resisdual hardness and engineering yield stress. Body-centered cubic metals and alloys are characterized by irregular dislocation arrays as a result of the more numerous slip planes, although twinning also occurs in bcc metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowan, G.R., Trans. TMS-AIME, 233, 1120 (1965).

    CAS  Google Scholar 

  2. Murr, L.E., and Kuhlmann-Wilsdorf, D., Acta Met., 26, 847 (1978).

    Article  CAS  Google Scholar 

  3. Smith, C.S., Trans. TMS-AIME, 212, 574 (1958).

    CAS  Google Scholar 

  4. Deiter, G.E., in “Response of Metals to High Velocity Deformation Metallurgical Conferences”, Wiley Interscience, New York, vol. 9 (1961).

    Google Scholar 

  5. Nolder, R.L., and Thomas, G., Acta Met., 12, 227 (1964).

    Article  CAS  Google Scholar 

  6. Inman, M.C., Murr, L.E., Rose, M.F., in Advances in Electron Metallography, ASTM-STP 396, 6, 39 (1966).

    Google Scholar 

  7. Ashby, M.F., Phil. Mag., 21, 399 (1970).

    Article  CAS  Google Scholar 

  8. McElroy, R.J., and Szkopiak, Z.C., Int. Metall. Rev., 17, 175 (1972).

    CAS  Google Scholar 

  9. Rankine, W.J.M., Phil. Trans. Roy Soc., London, 160 (1870).

    Google Scholar 

  10. Hugoniot, H., J. ecole polytech., 58 (1889).

    Google Scholar 

  11. Rice, M.H., McQueen, R.G., and Walsh, J.M., “Compression of Solids by Strong Shock Waves, Solid State Physics”, Academic Press, New York, vol. 6 (1958).

    Google Scholar 

  12. Walsh, J.M., and Christian, R.H., Phys. Rev., 97, 1544 (1955).

    Article  CAS  Google Scholar 

  13. Duvall, G.E., “Response of Metals to High Velocity Deformation”, Interscience Publishers, New York, vol. 9 (1960).

    Google Scholar 

  14. Murr, L.E., and Grace, F.I., Exp. Mech., 5, 145 (1969).

    Article  Google Scholar 

  15. Fowler, C.M., Minshall, F.S., and Zukas, E.G., in “Response of Metals to High Velocity Deformation”, Interscience Publishers, New York, vol. 9 (1961).

    Google Scholar 

  16. Rose, M.F., and Grace, F.I., Brit. J. Appl. Phys. 18, 671 (1967).

    Article  CAS  Google Scholar 

  17. Grace, F.I., Ph.D. Dissertation, Pennsylvania State University, University Park, Pennsylvania (unpublished ) (1967).

    Google Scholar 

  18. Murr, L.E., Scripta Met., 12, 201 (1978).

    Article  CAS  Google Scholar 

  19. Grace, F.L, J. Appl. Phys., 40, 2649 (1969).

    Article  CAS  Google Scholar 

  20. Rose, M.F., Ph.D. Dissertation, Pennsylvania State University, University Park, Pennslyvania (unpublished ) (1966).

    Google Scholar 

  21. Moin, E., and Murr, L.E., Mater. Sci. Engr., 37, 249 (1979).

    Article  CAS  Google Scholar 

  22. Greulich, F., and Murr, L.E., Mater. Sci., Engr., 39, 81 (1979).

    Article  CAS  Google Scholar 

  23. Murr, L.E., Inal, O.T., and Morales, A.A., Acta Met., 24, 261 (1976).

    Article  CAS  Google Scholar 

  24. Wongwiwat, K., and Murr, L.E., Mater. Sci. Engr., 35, 273 (1978).

    Article  CAS  Google Scholar 

  25. Murr, L.E. and Grace, F.I., Trans. TMS-AIME, 245, 2229 (1969).

    Google Scholar 

  26. Grace, F.I., Inman, M.C., and Murr, L.E., Brit. J. Appl. Phys., 1, 1437 (1968).

    Google Scholar 

  27. Murr, L.E., and Foltz, J.V., J, Appl. Phys., 40, 3796 (1969).

    Article  CAS  Google Scholar 

  28. Murr, L.E. Vydyanath, H.R., and Foltz, J.V., Met. Trans., A1, 3215 (1970).

    CAS  Google Scholar 

  29. Murr, L.E., and Vydyanath, H.R., and Foltz, J.V., Met. Trans., A1, 3215 (1970).

    CAS  Google Scholar 

  30. Murr, L.E., and Vydyanath, H.R., Micron, 1, 406 (1970).

    Google Scholar 

  31. Murr, L.E., and Rose, M.F., Phil. Mag., 18, 281 (1968).

    CAS  Google Scholar 

  32. Zimmer, W., M.S. Thesis, New Mexico Institute of Mining and Technology, Socorro, (1979).

    Google Scholar 

  33. Holtzman, A.H., and Cowan, G.R. in “Response of Metals to High Velocity Deformation”, Metallurgical Conferences, Wiley Interscience, New York, vol. 9 (1960), p. 447.

    CAS  Google Scholar 

  34. Murr, L.E., “Interfacial Phenomena in Metals and Alloys”, Addison-Wesley Publishing Co., Inc., Reading, Mass. (1975).

    Google Scholar 

  35. Copley, S.M., and Kear, B.H., Acta Met., 16, 227 (1968),

    Article  CAS  Google Scholar 

  36. Meyers, M.A., Mater. Sci. Engr., 30, 99 (1977).

    Article  CAS  Google Scholar 

  37. Sleeswyk, A.W., Acta Met., 10, 705 (1962).

    Article  CAS  Google Scholar 

  38. Sleeswyk, A.W., Phil. Mag., 8, 1469 (1963).

    Article  Google Scholar 

  39. Bailey, J.E., Phil. Mag., 8, 223 (1963).

    Article  CAS  Google Scholar 

  40. McQueen, R.G., and Marsh, S.P., J. Appl. Phys., 31, 1253 (1960).

    Article  CAS  Google Scholar 

  41. Kressel, H., and Brown, N., J. Appl. Phys., 38, 1618 (1967).

    Article  CAS  Google Scholar 

  42. Zukas, E.G., Metals Engr. Quart. (ASM), 6, 16 (1966).

    Google Scholar 

  43. Leslie, W.C., in “Metallurgical Effects at High Strain Rates” Rohde, R.W., Butcher, B.M., Holland, J.R., Karnes, C.H.(eds.) Plenum Press, New York (1973), p. 572.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Murr, L.E. (1981). Residual Microstructure - Mechanical Property Relationships in Shock-Loaded Metals and Alloys. In: Meyers, M.A., Murr, L.E. (eds) Shock Waves and High-Strain-Rate Phenomena in Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3219-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3219-0_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3221-3

  • Online ISBN: 978-1-4613-3219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics