Skip to main content

Molluscs

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 74))

Abstract

The molluscs show every type of eye design from the most simple of eye-cups in limpets to the fish-like lens eyes of squid and octopus, which are every bit as sophisticated as their vertebrate parallels. Even in the bivalves, not a group renowned for their eyesight, there have been a number of curious evolutionary experiments. Thus in scallops one finds eyes that use mirrors rather than lenses to form the image, and in Area and its relatives the mantle bears many small compound eyes not very different from the apposition eyes of insects or sabellid tube worms. These are essentially evolutionary “one-offs” which led nowhere, but which provided their bearers with the ability to respond to moving predators before they are close enough to cast a direct shadow.

Shadow responses, which one finds in bivalve clams and some gastropods, turn out to be generated in a way that is possibly unique in the animal kingdom, in that the photoreceptors that mediate them are primary “off” receptors which hyperpolarise in the light and discharge when the light dims or is turned off. It is ironic that this was discovered Pecten by Hartline in 1938 30 years before it was suspected that vertebrate photoreceptors might behave in a not very different way. The more usual kind of depolarising receptor is also found, usually in the true cephalic eyes of both gastropods and cephalopods. The “off” receptors tend to be highly ciliated and the “on” receptors microvillous, though what this means physiologically is still an interesting open question

In both gastropods and cephalopods the main line of evolutionary development has been in the direction of optically high quality lens eyes. Snails like Helix have only a soft, weakly refracting lens, but in the winkle Littorina this has become hard and inhomogeneous, and has a ratio of focal length to radius of about 2,5 (Matthiessen’s ratio) characteristic of the aplanatic lenses of fish eyes. In the strombids this kind of eye can be quite large — a mm or more — with potentially excellent resolutions (I °), though no-one knows what the eyes are used for. The heteropods are even more intriguing, having fish-like eyes with long narrow retinae only a few cells wide. It now seems that they make scanning eye movements, sweeping through the visual surroundings so that the narrow retina acts as a single like on the TV scan.

Parallels between cephalopod and fish eyes are legendary. They both have Matthiessen’s ratio lenses, mobile pupils and a full complement of eye-movements. The receptors, though, are quite different, and there is no suggestion of colour vision in cephalopods or any other mollusc. Nautilus is a real oddity. How did it last that long with only pinhole optics?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkon, D.L. & Fuortes, M.G.F. (1972) Responses of photoreceptors in Hermissenda. J. Gen. Physiol. 60: 631–649.

    Article  Google Scholar 

  • Arey, L.B. & Crozier, W.J. (1921) On the natural history of Onchidium. J. Exp. Zool. 32: 443–502.

    Article  Google Scholar 

  • Barber, V.C. & Wright, D.E. (1969a) The fine structure of the eye and optic tentacle of the mollusc Cardium edule. J. Ultrastruct. Res. 26: 515–528.

    Article  Google Scholar 

  • Barber, V.C. & Wright, D.E. (1969b) The fine structure of the sense organs of the cephalopod mollusc Nautilus. Z. Zellforsch. 102: 293–312.

    Google Scholar 

  • Barber, V.C., Evans, E.M. & Land, M.F. (1967) The fine structure of the eye of the mollusc Pecten maximus. Z. Zellforsch. 76: 295–312.

    Article  Google Scholar 

  • Baylor, D.A. & Fuortes, M.G.R (1970) Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207: 77–92.

    Google Scholar 

  • Blest, A.D. & Land, M.F. (1977) The physiological optics of Dinopis subrufus L. Koch: a fish–lens in a spider. Proc. R. Soc. Lond. 196: 197–222.

    Article  Google Scholar 

  • Boyle, P.R. (1969a) Rhabdomeric ocellus in a chiton. Nature (Lond.) 222: 895–896.

    Article  Google Scholar 

  • Boyle, P.R. (1969b) Fine structure of the eyes of Onithochiton neglectus ( Mollusca: Polyplacophora). Z. Zellforsch. 102: 313–332.

    Article  Google Scholar 

  • Boyle, P.R. (1974) The aesthetes of chitons. II. Fine structure in Lepidochitona cinereus L. Cell. Tissue Res. 153: 383–398.

    Google Scholar 

  • Braun, R. (1954) Zum Lichtsinn facettenaugentragender Muscheln. Zool. Jb. (Zool. u. Physiol. ) 65: 91–125.

    Google Scholar 

  • Buddenbrock, W.V. & Moller-Racke, I. (1953) über den Lichtsinn von Pecten. Pubbl. Staz. zool. Napoli. 24: 217–245.

    Google Scholar 

  • Bullock, T.H. (1965) The Mollusca. In: Structure and Function in the Nervous Systems of Invertebrates. Ed. T.H. Bullock & G.A. Horridge, San Francisco, W.H. Freeman, p. 1273–1515.

    Google Scholar 

  • Collett, T.S. & Land, M.F. (1975) Visual control of flight behaviour in the hoverfly Syritta pipiens L. J. Comp. Physiol. 99: 1–66.

    Article  Google Scholar 

  • Collewijn, H. (1970) Oculomotor reactions in the cuttlefish, Sepia officinalis. J. Exp. Biol. 52: 369–384.

    Google Scholar 

  • Dahmen, H.J. (1977) The menotactic orientation of the prosobranch mollusc Littorina littorea. Biol. Cybern. 26: 17–23.

    Article  Google Scholar 

  • Dakin, W.J. (1910) The eye of Pecten. Quart. J. Microsc. Sei. 55: 49–112.

    Google Scholar 

  • Dennis, M.J. (1967) Electrophysiology of the visual system of a nudibranch mollusc. 3. Neurophysiol. 30: 1439–1465.

    Google Scholar 

  • Denton, E.J. (1970) On the organization of the reflecting surfaces in some marine animals. Phil. Trans. R. Soc. Lond. 258B: 285–313.

    Google Scholar 

  • Dilly, P.N. (1969) The structure of a photoreceptor organelle in the eye of Pterotrachea mutica. Z. Zellforsch. 99: 420–429.

    Article  Google Scholar 

  • Eakin, R.M. (1972) Structure of invertebrate photoreceptors. In: Handbook of Sensory Physiology Vol. VII/1 • Ed. H.J.A. Dartnall, Berlin, Springer, p. 625–684.

    Google Scholar 

  • Fletcher, A., Murphy, T. & Young, A. (1954) Solutions of two optical problems. Proc. R. Soc. Lond. 223A: 216–225.

    Google Scholar 

  • Föh, H. (1932) Der Schattenreflex bei Helix pomatia. Zool. Jb. (Zool. u. Physiol.) 52: 1–78.

    Google Scholar 

  • Fraenkel, G.S. & Gunn, D.L. (1961) The Orientation of Animals. New York: Dover.

    Google Scholar 

  • Fujimoto, K., Yanase, T., Okuno, Y. & Iwata, K. (1966) Electrical responses in Onchidium eyes. Mem. Osaka Gakugei Univ. B 15: 98–108.

    Google Scholar 

  • Gillary, H.L. (1974) Light–evoked potentials from the eye and optic nerve of Strombus: response wave form and spectral sensitivity. J. Exp. Biol. 60: 383–396.

    Google Scholar 

  • Gillary, H.L. & Gillary, E.W. (1979) Ultrastructural features of the retina and optic nerve of Strombus luhuanus, a marine gastropod. 3. Morph. 159: 89–116.

    Article  Google Scholar 

  • Gorman, A.L.F. & McReynolds, J.S. (1978) Ionic effects on the membrane potential of hyperpolarizing receptors in the scallop retina. J. Physiol. ( Lond. ) 275: 345–355.

    Google Scholar 

  • Gwilliam, G.F. (1963) The mechanism of the shadow reflex in Cirripedia. Biol. Bull. Woods Hole 125: 470–485.

    Article  Google Scholar 

  • Hamilton, P.V. (1977) Daily movements and visual location of plant stems by Littorina irrorata ( Mollusca: Gastropoda). Mar. Behav. Physiol. 4: 293–304.

    Article  Google Scholar 

  • Hamilton, P.V. & Russell, B.J. (1982) Celestial orientation by surface– swimming Aplysia brasiliana Rang (Mollusca: Gastropoda). J. Exp. Mar. Biol. Ecol. 56: 145–152.

    Article  Google Scholar 

  • Hartline, H.K. (1938) The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye. J. Cell. Comp. Physiol. 11: 465–477.

    Article  Google Scholar 

  • Hartline, P.H., Hurley, A.C. & Lange, G.D. (1979) Eye stabilization by statocyst mediated oculomotor reflex in Nautilus. J. Comp. Physiol. 132: 117–126.

    Article  Google Scholar 

  • Hesse, R. (1900) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. VI. Die Augen einiger Mollusken. Z. wiss. Zoll. 68: 379–477.

    Google Scholar 

  • Hesse, R. (1908) Das Sehen der niederen Tiere. Jena: Fischer.

    Google Scholar 

  • Holland, C.H. (1979) Early Cephalopoda. In: The Origin of the Major Invertebrate Groups. Ed. M.R. House, London, Academic Press, p. 367–379.

    Google Scholar 

  • Hurley, A.C., Lange, G.D. & Hartline, P.H. (1978) The adjustable “pinhole camera” eye of Nautilus. J. Exp. Zool. 205: 37–44.

    Article  Google Scholar 

  • Kennedy, D. (1960) Neural photoreception in a lamellibranch mollusc. J. Gen. Physiol. 44: 277–299.

    Article  Google Scholar 

  • Krasne, F.B. & Lawrence, P.A. (1966) Structure of the photoreceptors in the compound eyespots of Branchiomma vesiculosum. J. Cell Sei. 1: 239–248.

    Google Scholar 

  • Land, M.F. (1965) Image formation by a concave reflector in the eye of the scallop Pecten maximus. J. Physiol. ( Lond. ) 179: 138–153.

    Google Scholar 

  • Land, M.F. (1966a) Activity in the optic nerve of Pecten maximus in response to changes in light intensity, and to pattern and movement in the optical environment. J. Exp. Biol. 45: 83–99.

    Google Scholar 

  • Land, M.F. (1966b) A multilayer interference reflector in the eye of the scallop, Pecten maximus. J. Exp. Biol. 45: 433–437.

    Google Scholar 

  • Land, M.F. (1968) Functional aspects of the optical and retinal organization of the mollusc eye. Symp. Zool. Soc. Lond. 23: 75–96.

    Google Scholar 

  • Land, M.F. (1972) The physics and biology of animal reflectors. Prog. Biophys. Mol. Biol. 24: 75–106.

    Article  Google Scholar 

  • Land, M.F. (1975) Similarities in the visual behavior of arthropods and men. In: Handbook of Psychobiology. Ed. M.S. Grazzaniga & C. Blakemore, New York, Academic Press, p. 49–72.

    Google Scholar 

  • Land, M.F. (1981) Optics and vision in invertebrates. In: Handbook of Sensory Physiology Vol. VII/6B. Ed. H. Autrum, Berlin, Springer, p. 471–592.

    Google Scholar 

  • Land, M.F. (1982) Scanning eye movements in a heteropod mollusc. J. Exp. Biol. 96: 427–430.

    Google Scholar 

  • Land, M.F. (1983) Crustacea. (This volume).

    Google Scholar 

  • Light, V.E. (1930) Photoreceptors in Mya arenaria, with special reference to their distribution, structure and function. 3. Morph. 49: 1–42.

    Article  Google Scholar 

  • Locket, N.A. (1977) Adaptations to the deep–sea environment. In: Handbook of Sensory Physiology Vol. VII/5. Ed. F. Crescitelli, Berlin, Springer, p. 67–192.

    Google Scholar 

  • Matthiessen, L. (1886) Ueber den physikalisch–optischen Bau des Auges der Cetaceen und der Fische. Pflügers Archiv 38: 521–528.

    Article  Google Scholar 

  • McReynolds, J.S. & Gorman, A.L.F. (1970a) Photoreceptor potentials of opposite polarity in the eye of the scallop, Pecten irradians. J. Gen. Physiol. 56: 376–391.

    Article  Google Scholar 

  • McReynolds, J.S. & Gorman, A.L.F. (1970b) Membrane conductances and spectral sensitivities of Pecten photoreceptors. J. Gen. Physiol. 56: 392–406.

    Article  Google Scholar 

  • McReynolds, J.A. & Gorman, A.L.F. (1974) Ionic basis of hyperpolarizing receptor potential in scallop eye: increase in permeability to potassium ions. Science 183: 658–659.

    Article  Google Scholar 

  • Messenger, J.B. (1981) Comparative physiology of vision in molluscs. In: Handbook of Sensory Physiology Vol. VII/6C. Ed. H. Autrum, Berlin, Springer, p. 93–2Q0.

    Google Scholar 

  • Miller, W.H. (1958) Derivatives of cilia in the distal sense cells in the retina of Pecten. J. Biophys. Biochem. Cytol. 4: 227–228.

    Article  Google Scholar 

  • Moody, M.F. & Parriss, J.R. (1961) The discrimination of polarized light by Octopus: a behavioural and morphological study. Z. vergl. Physiol. 44: 268–291.

    Article  Google Scholar 

  • Mpistos, G.J. (1973) Physiology of vision in the mollusk Lima scabra. J. Neurophysiol. 36: 371–383.

    Google Scholar 

  • Müntz, W.R.A. (1977) Pupillary response of cephalopods. Symp. Zool. Soc. Lond. 38: 277–285.

    Google Scholar 

  • Newell, G.E. (1965) The eye of Littorina littorea. Proc. Zool. Soc. Lond. 144: 75–86.

    Google Scholar 

  • Packard, A. (1972) Cephalopods and fish: the limits of convergence. Biol. Rev. 47: 241–307.

    Article  Google Scholar 

  • Patten, W. (1886) Eyes of molluscs and arthropods. Mitt. Zool. Staz. Neapel. 6: 542–756.

    Google Scholar 

  • Pumphrey, R.J. (1961) Concerning vision. In: The Cell and the Organism. Ed. J.A. Ramsay & V.B. Wigglesworth, Cambridge, University Press, p. 193–208.

    Google Scholar 

  • Roper, C.F.E. & Boss, K.J. (1982) The giant squid. Sci. Am. 246(4): 82–89.

    Google Scholar 

  • Rosen, M.D., Stasek, C.R. & Hermans, C.O. (1978) The ultrastructure and evolutionary significance of the cerebral ocelli of Mytilus edulis, the bay mussel. Veliger21: 10–18. Sivak, J.G. (1982) Optical properties of a cephalopod eye (the shortfinned squid, Illex illecebrosus). J. Comp. Physiol. 147: 323–327.

    Google Scholar 

  • Sivak, J.G. (1982) Optical properties of a cephalopod eye (the shortfinned squid, Illex illecebrosus). J. Comp. Physiol. 147: 323–327.

    Article  Google Scholar 

  • Stoll, C.J. (1973) Observations on the ultrastructure of the eye of the basommatophoran snail Lymnea stagnalis. Proc. K. Ned. Akad. Wet. C. 76: 1–11.

    Google Scholar 

  • Sutherland, N.S. & Macintosh, N.J. (1971) Mechanisms of Animal Discrimination Learning. New York, Academic Press.

    Google Scholar 

  • Toyoda, J. & Shapley, R.M. (1967) The intracellular recorded response in the scallop eye. Biol. Bull. Woods Hole 133: 490.

    Google Scholar 

  • Toyoda, J., Nosaki, H. & Tomita, T. (1969) Light induced resistance changes in single photoreceptors of Necturus and Gecko. Vision Res. 9: 453–463.

    Article  Google Scholar 

  • Wells, M.J. (1978) Octopus: Physiology and Behaviour of an Advanced Invertebrate. London: Chapman and Hall.

    Google Scholar 

  • Wiederhold, M.L., MacNichol, E.F. & Bell, A.L. (1973) Photoreceptor spike responses in the hard shell clam, Mercenaria mercenaria. J. Gen. Physiol. 61: 24–55.

    Article  Google Scholar 

  • Yanase, T. & Sakamoto, S. (1965) Fine structure of the visual cells of the dorsal eye in molluscan Onchidium verruculatum. Zool. Mag. ( Tokyo ) 74: 238–242.

    Google Scholar 

  • Yochelson, E.I. (1979) Early radiation of Mollusca and mollusc–like groups. In: The Origin of Major Invertebrate Groups. Ed. M.R. House, London, Academic Press, p. 323–358.

    Google Scholar 

  • Young, J.Z. (1964) A Model of the Brain. Oxford, Clarendon.

    Google Scholar 

  • Young, J.Z. (1977) Brain, behaviour and evolution of cephalopods. Symp. Zool. Soc. Lond. 38: 377–434.

    Google Scholar 

  • Young, R.E. (1975) Function of the dimorphic eyes of the midwater squid Histioteuthis dofleini. Pacific Sci. 29: 211–218.

    Google Scholar 

  • Zonana, H.V. (1961) Fine structure of the squid retina. Bull. 3ohns Hopkins Hosp. 109: 185–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Land, M.F. (1984). Molluscs. In: Ali, M.A. (eds) Photoreception and Vision in Invertebrates. NATO ASI Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2743-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2743-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9699-7

  • Online ISBN: 978-1-4613-2743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics