Skip to main content

Signalling by protein kinase C isoforms in the heart

  • Chapter
Biochemistry of Signal Transduction in Myocardium

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 17))

Abstract

Understanding transmembrane signalling process is one of the major challenge of the decade. In most tissues, since Fisher and Krebs’s discovery in the 1950’s, protein phosphorylation has been widely recognized as a key event of this cellular function. Indeed, binding of hormones or neurotransmitters to specific membrane receptors leads to the generation of cytosoluble second messengers which in turn activate a specific protein kinase. Numerous protein kinases have been so far identified and roughly classified into two groups, namely serine/threonine and tyrosine kinases on the basis of the target amino acid although some more recently discovered kinases like MEK (or MAP kinase kinase) phosphorylate both serine and tyrosine residues.

Protein kinase C is a serine/threonine kinase that was first described by Takai et al. [1] as a Ca- and phospholipid-dependent protein kinase. Later on, Kuo et al. [2] found that PKC was expressed in most tissues including the heart. The field of investigation became more complicated when it was found that the kinase is not a single molecular entity and that several isoforms exist. At present, 12 PKC isoforms and other PKC-related kinases [3] were identified in mammalian tissues. These are classified into three groups. (1) the Ca-activated α-, β-,and γ-PKCs which display a Ca-binding site (C2); (2) the Ca-insensitive δ-, ε-, θ-, η-, and μ-PKCs. The kinases that belong to both of these groups display two cystein-rich domains (CI) which bind phorbol esters (for recent review on PKC structure, see [4]). (3) The third group was named atypical PKCs and include, ζ, λ, and τ-PKCs that lack both the C2 and one cystein-rich domain. Consequently, these isoforms are Ca-insensitive and cannot be activated by phorbol esters [5]. In the heart, evidence that multiple PKC isoforms exist was first provided by Kosaka et al. [6] who identified by chromatography at least two PKC-related isoenzymes. Numerous studies were thus devoted to the biochemical characterization of these isoenzymes (see [7] for review on cardiac PKCs) as well as to the identification of their substrates.

This overview aims at updating the present knowledge on the expression, activation and functions of PKC isoforms in cardiac cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takai Y, Kisihimoto A, Iwasa Y, Kawahara Y, Mori T, Nishizuka Y: Calcium dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem 254: 3692–3695, 1979

    PubMed  CAS  Google Scholar 

  2. Kuo JF, Andersson RGG., Wise L, Mackerlova L, Salomonsson I, Brackett NL, Katoh L, Shoji M, Wren RW: Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc Natl Acad Sci USA 77: 7039–7043, 1980

    Article  PubMed  CAS  Google Scholar 

  3. Palmer RH, Ridden J, Parker PJ: Cloning and expression patterns of two members of a novel protein-kinase-C-related kinase family. Eur J Biochem 227: 344–351, 1995

    Article  PubMed  CAS  Google Scholar 

  4. Azzi A, Boscoboinik D, Hensey C: The protein kinase C family. Eur J Biochem 208: 547–557, 1992

    Article  PubMed  CAS  Google Scholar 

  5. Dekker LV, Parker PJ: Protein kinase C — a question of specificity. TIBS 19: 73–77, 1994

    PubMed  CAS  Google Scholar 

  6. Kosaka Y, Ogita K, Ase K, Nomura H. Kikkawa U, Nishizuka Y: The heterogeneity of protein kinase C in various rat tissues. Biochem Biophys Res Comm 151: 973–981, 1988

    Article  PubMed  CAS  Google Scholar 

  7. Pucéat M, Brown JH: Protein Kinase C in the heart. In: Protein Kinase C. J.F. Kuo (ed.). Oxford University Press, 1994, pp 249–268

    Google Scholar 

  8. Mochly-Rosen D, Henrich CJ, Cheever L, Khaner H, Simpson PC: A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Reg 1: 693–706, 1990

    CAS  Google Scholar 

  9. Pucéat M, Hilal-Dandan R, Strulovici B, Brunton LL, Brown JH: Differential regulation of protein kinase C isoforms in isolated neonatal and adult rat cardiomyocytes. J Biol Chem 269: 16938–16944, 1994

    PubMed  Google Scholar 

  10. Bogoyevitch MA, Parker PJ, Sugden PH: Characterization of protein kinase C isotype expression in adult rat heart. Protein kinase C-ε is a major isotype present, and it is activated by phorbol esters, epinephrine, and endothelin. Circ Res 72: 757–767, 1993

    PubMed  CAS  Google Scholar 

  11. Rybin VO, Steinberg SF: Protein kinase C isoform expression and regulation in the developing rat heart. Circ Res, 74: 299–307, 1994

    PubMed  CAS  Google Scholar 

  12. Nogushi A, DeGuire J, Zanaboni P. Protein kinase C in the developing rat liver, heart and brain. Dev Pharmacol Ther 11: 37–43, 1988

    Google Scholar 

  13. Bogoyevitch MA, Glennon PE, Andersson MB, Clerk A, Lazou A, Marshall CJ, Parker PJ, Sugden PH: Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. J Biol Chem 269: 1–10, 1994

    Google Scholar 

  14. Disatnik MH, Buraggi G, Mochly-Rosen D: Localization of protein kinase C isozymes in cardiac myocytes. Exp Cell Res 210:287–297, 1994

    Article  PubMed  CAS  Google Scholar 

  15. Kohout TA, Rogers TB: Use of PCR-based method to characterize protein kinase C isoform expression in cardiac cells. Am J Physiol 264: C135–C1359, 1993

    Google Scholar 

  16. Katoh N, Wrenn RW, Wise BC, Shoji M, Kuo JF: Substrate proteins for calmodulin-sensitive and phospholipid-sensitive Ca-dependent protein kinases in heart, and inhibition of their phosphorylation bypalmitoylcarnitine. Proc Natl Acad Sci USA 78: 4813–4817, 1981

    Article  PubMed  CAS  Google Scholar 

  17. Liu JD, Wood JD, Raynor RL, Wang Yi-Chong, Noland A, Ansari AA, Kuo JF: Subcellular distribution and immunocytochemical localization of protein kinase C in myocardium, and phosphorylation of troponin in isolated myocytes stimulated by isoproterenol or phorbol ester. Biochem Biophys Res Comm 162: 1105–1110, 1989

    Article  PubMed  CAS  Google Scholar 

  18. Henrich CJ, Smlpson PC: Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to α1,-adrenergic and phorbol ester stimulation. J Mol Cell Cardiol 20: 1081–1085, 1988

    Article  PubMed  CAS  Google Scholar 

  19. Kaku T, Lakatta E, Filburn C: α-Adrenergic regulation of phosphoinositide metabolism and protein kinase C in isolated cardiac myocytes. Am J Physiol 260: C635-C642, 1991

    PubMed  CAS  Google Scholar 

  20. Mochly-Rosen D, Babaum AI and Koshland DE Jr: Distinct cellular and regional localization of immunoreactive protein kinase C in rat brain. Proc Natl Acad Sci USA 84: 4660–4664, 1987

    Article  PubMed  CAS  Google Scholar 

  21. Clerk A, Bogoyevitch MA, Andersson MB, Sugden PH: Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem 269: 1–10, 1994

    Google Scholar 

  22. Henry P, Demolombe S, Puceat M, Escande D: Adenosine A1, stimulation activates δ-protein kinase C in rat ventricular myocytes. Circ Res 78: 161–165, 1996

    PubMed  CAS  Google Scholar 

  23. Mochly-Rosen D, Khaner R Lopez J, Smith B: Intracellular receptors for activated protein kinase C. Proc Natl Acad Sci USA 266: 14866–14868, 1991

    CAS  Google Scholar 

  24. Presti CF, Scott BT, Jones LR: Identification of an endogeneous protein kinase C activity and its intrinsic 15-Kilodalton substrate in purified canine cardiac sarcolemmal vesicles. J Biol Chem 260: 13879–13889, 1985

    PubMed  CAS  Google Scholar 

  25. Meij JTA, Bezstarosti K, Panagia V, Lamers JMJ: Phorbol ester and the actions of phosphatidylinositol 4,5-biphosphate specific phospholipase C and protein kinase C in microsomes prepared from cultured myocytes. Moll Cell Biochem 105: 37–47, 1991

    Article  CAS  Google Scholar 

  26. Palmer CJ, Scott BT, Jones LR: Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem 266:11126–11130, 1991

    PubMed  CAS  Google Scholar 

  27. Moorman JR, Palmer CJ, John m JE, Durieux ME, Jones L: Phospholemman expression induces a hyperpolarization-activated chloride current in Xenopus oocytes. J Biol Chem 267:14551–14554,1992

    PubMed  CAS  Google Scholar 

  28. Talosi L, Kranias EG: Effect of a-adrenergic stimulation on activation of protein kinase C and phosphorylation of proteins in intact rabbit hearts. Circ Res 70: 670–678, 1992

    PubMed  CAS  Google Scholar 

  29. Edes I, Kranias EG: Phospholamban and troponin I are substrates for protein kinase C in vitro but not in intact beating guinea pig hearts. Circ Res 67: 394–400, 1990

    PubMed  CAS  Google Scholar 

  30. Walsh KB: Activation of a heart chloride conductance during stimulation of protein kinase C. Mol Pharmacol 40: 342–346, 1991

    PubMed  CAS  Google Scholar 

  31. Movsesian MA, Nishikawa M, Adelstein RS: Phosphorylation of phospholamban by calcium activated, phospholipid dependent protein kinase. J Biol Chem 259: 8029–8032, 1984

    PubMed  CAS  Google Scholar 

  32. Iwasa Y, Hosey MM: Phosphorylation of cardiac sarcolemma proteins by the Ca-activated phospholipid-dependent protein kinase. J Biol Chem 259: 534–540, 1984

    PubMed  CAS  Google Scholar 

  33. Hartmann M, Schrader J: Protein kinase C phosphorylates a 15 kDa protein but not phospholamban in intact rat cardiac myocytes. Eur J Pharmacol 226: 225–23, 1992

    Article  PubMed  CAS  Google Scholar 

  34. Rogers T, Gaa ST, Massey C, Dosemeci A: Protein kinase C inhibits Ca2+ accumulation in cardiac sarcoplamic reticulum. J Biol Chem 265: 4302–430, 1990

    PubMed  CAS  Google Scholar 

  35. Capogrossi MC, Kaku T, Filburn CR, Pelto DJ, Hamsford RG, Spurgeon HA, Lakatta EG: Phorbol ester and dioctanoyl glycerol stimulate membrane association of protein kinase C and have a negative inotropic effect mediated by changes in cytosolic Ca2+ in adult rat cardiac myocytes. Circ Res 66: 1143–1155, 1990

    PubMed  CAS  Google Scholar 

  36. Gwathmey JK, Hajar RJ: Effect of protein kinase C activation on sarcoplasmic reticulum function and apparent myofibrillar Ca2+ sensitivity in intact and skinned muscles from normal and diseased human myocardium. Circ Res 67: 744–752, 1990

    PubMed  CAS  Google Scholar 

  37. Apkon M, Nerbonne J: α1-adrenergic agonists selectively suppress voltage dependent K+ currents in rat ventricular myocytes. Proc Natl Acad Sci USA 85: 8756–8760, 1988

    Article  PubMed  CAS  Google Scholar 

  38. Tohse N, Kameyama M, and Irisawa H: Intracellular Ca2+ and protein kinase C modulate K+ current in guinea pig heart cell. Am J Physiol 252:1321–1324, 1987

    Google Scholar 

  39. Walsh KB, Kass RS: Regulation of a heart potassium channel by protein kinase A and C. Science 242: 67–69, 1988

    Article  PubMed  CAS  Google Scholar 

  40. Tohse N, Nakaya H, Kanno M: α1-adrenoceptor stimulation enhances the delayed rectifier K+ current of guinea pig ventricular cells through the activation of protein kinase C. Circ Res 71: 1441–1446, 1992

    PubMed  CAS  Google Scholar 

  41. Qu Y, Rogers J, Tanada T, Scheuer T, Catterall WA: Modulation of cardiac Na+ channels expressed in a mammalian cell line and in ventricular myocytes by protein kinase C. Proc Natl Acad Sci USA 91: 3289–3293, 1994

    Article  PubMed  CAS  Google Scholar 

  42. Levitan IB: Phosphorylation of ion channels. J Memb Biol 87: 177–180, 1985

    Article  CAS  Google Scholar 

  43. Dosemeci A, Dhallan RS, Cohen MM, Lederer WJ, Rogers TB: Phorbol ester increases calcium current and stimulates the effect of angiotensin II in cultured neonatal rat heart myocytes. Circ Res 62: 347–357, 1988

    PubMed  CAS  Google Scholar 

  44. Tseng GN and Boyden PA: Different effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. Am J Physiol 252: H1321-H1324, 1991

    Google Scholar 

  45. Lacerda AE, Rampe D, Brown A: Effects of protein kinase C activators on cardiac Ca2+ channels, nature 335: 249–251, 1988

    Article  PubMed  CAS  Google Scholar 

  46. Liu QL, Karpinski E, Pang PKT: Comparison of the action of two protein kinase C activators on dihydropyridine-sensitive Ca2+ channels in neonatal rat ventricular myocytes. Biochem Biophys Res Comm 191:796–801, 1993

    Article  PubMed  CAS  Google Scholar 

  47. Bourinet E, Fournier F, Lory P, Charnet P, Nargeot J: protein kinase C regulation of cardiac calcium channels expressed in Xenopus oocytes. Pflügers Arch 421: 247–255, 1992

    Article  PubMed  CAS  Google Scholar 

  48. Singer-Lahat D, Gershon E, Lotan H, Hullin R Biel M, Flockerzi V, Hofmann F, Dascal N: Modulation of cardiac Ca2+ channels in xenopus oocytes by protein kinase C. FEBS lett 306: 113–118, 1992

    Article  PubMed  CAS  Google Scholar 

  49. Romani A, Marfella C, Scarpa A: Regulation of Mg uptake in isolated rat myocytes and hepatocytes by protein kinase C. FEBS 296: 135–140, 1992

    Article  CAS  Google Scholar 

  50. Fliegel L, Sardet C, Pouyssegur J, Barr A: Identification of the protein and cDNA of the cardiac Na+/H+ exchanger. FEBS 279: 25–29, 1991

    Article  CAS  Google Scholar 

  51. Pucéat M, Clément-Chomienne O, Terzic A, Vassort G: α1,-Adrenoceptor and purinoceptor agonists modulate the Na/H antiport in single cardiac cells. Am J Physiol 264: H310-H319, 1992

    Google Scholar 

  52. McLeod KT, Harding SE: Effects of phorbol ester on contraction, intracellular pH and Ca2+ in isolated mammalian ventricular myocytes. J Physiol 444: 481–498, 1991

    Google Scholar 

  53. Lim MS, Sutherland C, Walsh MP: Phosphorylation of bovine cardiac C-protein by protein kinase C. Biochem Biophys Res Comm 132: 1187–1195, 1985

    Article  PubMed  CAS  Google Scholar 

  54. Venema RC, Kuo JF: Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is associated with inhibition of myofibrillar actomyosin MgATPase. J Biol Chem 268: 2705–2711, 1993

    PubMed  CAS  Google Scholar 

  55. Katoh N, Wise BC, Kuo JF: Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid Ca2+-dependent protein kinase. Biochem J 209: 189–195, 1983

    PubMed  CAS  Google Scholar 

  56. Clément O, Pucéat M, Walsh M, Vasso Tt G: Protein kinase C enhances myosin light-chain kinase effects on force development and ATPase activity in rat single skinned cardiac cells. Biochem J 285: 311–317, 1992

    PubMed  Google Scholar 

  57. Noland TA, Kuo JF: Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2+-stimulated actomyosin MgATPase activity. J Biol Chem 266: 4974–4978, 1991

    PubMed  CAS  Google Scholar 

  58. Noland TA, Kuo JF: Protein kinase C phosphorylation of cardiac troponin decreases Ca2+-dependent actomyosin MgATPase activity and troponin T binding to tropomyosin-F-actin complex. Biochem J 288: 123–129, 1993

    Google Scholar 

  59. Noland TA, Kuo JF: Protein kinase C phosphorylation of cardiac troponin I and troponin T inhibits Ca2+-stimulated MgATPase activity in reconstituted actomyosin and isolated myofibrils, and decreases actin-myosin interactions. J Mol Cell Cardiol 25: 53–65, 1992

    Article  Google Scholar 

  60. Swiderek K, Jaquet Ko Meyer HE, Schachtele C, Hofmann F, Heilmeyer LM: Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR spectroscopy and phosphorylation by protein kinases. Eur J Biochem 190: 575–582, 1990

    Article  PubMed  CAS  Google Scholar 

  61. Pucéat M, Clément O, Lechene P, Pélosin JM, Ventura-Clapier R, Vassort G: Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells. Circ Res 67: 517–524, 1990

    PubMed  Google Scholar 

  62. Venema RC, Raynor RL, Noland TA, Kuo JF: Role of protein kinase C in the phosphorylation of cardiac myosin light chain 2. Biochem J 294:401–406, 1993

    PubMed  CAS  Google Scholar 

  63. Yuan S, Sunahara FA, Sen AK: Tumor-promoting phorbol esters inhibit cardiac functions and induce redistribution of protein kinase C in perfused beating rat heart. Circ Res 61: 372–378, 1987

    PubMed  CAS  Google Scholar 

  64. Endou M, Hattori Y, Tohse N, Kanno M: Protein kinase C is not involved in α1-adrenoceptor-mediated effect. Am J Physiol 260: H27–H36, 1991

    PubMed  CAS  Google Scholar 

  65. Otani H, Otani H, Das DH: α1-Adrenoceptor mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscle. Circ Res 62: 8–17, 1988

    PubMed  CAS  Google Scholar 

  66. Watson JE, Karmazyn M: Concentration-dependent effects of protein kinase C-activating and nonactivating phorbol esters on myocardial contractility, coronary resistance, energy metabolism, prostacyclin synthesis, and ultrastructure in isolated rat hearts. Circ Res 69: 1114–1131, 1991

    PubMed  CAS  Google Scholar 

  67. Chien KR, Knowlton KU, Zhu H, Chien S: Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5: 3037–3046, 1991

    PubMed  CAS  Google Scholar 

  68. Irons CE, Sei CA, Hidaka H, Glembotski CC: Protein kinase C and calmodulin kinase are required for endothelin-stimulated atrial natriuretic factor secretion fron primary atrial myocytes. J Biol Chem 267: 5211–5216, 1992

    PubMed  CAS  Google Scholar 

  69. Church DJ, Braconi S, Vallotton MB, Lang U: Protein kinase C-medi-ated phospholipase A2 activation, platelet-activating factor generation and prostacyclin release in spontaneously beating rat cardiomyocytes. Biochem J 290: 477–482, 1993

    PubMed  CAS  Google Scholar 

  70. Kariya K-I, Karns LR, Simpson PC: Expression of a constitutively activated mutant of the β-isozyme of protein kinase C in cardiac myocytes stimulates the promoter of the β-myosin heavy chain isogene. J Biol Chem 266: 10023–10026, 1991

    PubMed  CAS  Google Scholar 

  71. Shubeita HE, Martinson EA, Van Bilsen M, Chien KR, Brown JH: Transcriptional activation of the cardiac myosin hght chain 2 and atrial natriuretic factor genes by protein kinase C in neonatal rat ventricular myocytes. Proc Natl Acad Sci USA 89: 1305–1309, 1992

    Article  PubMed  CAS  Google Scholar 

  72. Decock JBJ, Gillespie-Brown J, Parker PJ, Sugden PH, Fuller SJ: Classical, novel and atypical isoforms of PKC stimulate ANF-and TRE/ AP-1-regulated-promoter activity in ventricular cardiomyocytes. FEBS 356: 275–278, 1995

    Article  Google Scholar 

  73. Kawaguchi H, Sano H, Iizuka K, Okada H, Kudo T, Kageyama Ko Muramoto S, Murakami T, Okamoto H, Mochizuki N, Kitabatake A: Phosphatidylinositol metabolism in hypertrophic rat heart. Circ Res 72: 966–972, 1993

    PubMed  CAS  Google Scholar 

  74. Makita N, Yasuda H: Alterations of phosphoinositide-specific phospholipase C and protein kinase C in the myocardium of spontaneously hypertensive rats. Basic Res Cardiol 85: 435-443, 1990

    Article  PubMed  CAS  Google Scholar 

  75. Gu X, Bishop SP: Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circ Res 75: 926–931, 1994

    PubMed  CAS  Google Scholar 

  76. Chambers TC, Eilon G: Heart protein kinase C activity increases during progression of disease in the cardiomyopathic hamster Biochem Biophys Res Comm 157: 507–514, 1988

    Article  PubMed  CAS  Google Scholar 

  77. Prasad MR, Jones RM: Enhanced membrane protein kinase C activity in myocardial ischemia. Basic Res Cardiol 87: 19–26, 1992

    Article  PubMed  CAS  Google Scholar 

  78. Strasser R, Braun-Dullaeus R, Walendzik H, Marquetant R: α1-receptor-independent activation of protein kinase C in acute myocardial ischemia. Mechanisms for sensitization of the adenylyl cyclase system Circ. Res. 70: 1304–1312, 1992

    PubMed  CAS  Google Scholar 

  79. Parratt JR: Protection of the heart by ischaemic preconditioning: mechanisms and possibilities for pharmacological exploitation. TIPS 15:19–25, 1994

    PubMed  CAS  Google Scholar 

  80. Cohen MV, Downey JM: Ischaemic preconditioning: can the protection be bottled? Lancet 342: 6, 1993

    Article  PubMed  CAS  Google Scholar 

  81. Armstrong S, Ganote CE: Preconditioning of isolated rabbit cardiomyocytes: effects of glycolytic blockade, phorbol esters, and ischaemia. Cardiovasc Res 28: 1700–1706, 1994

    Article  PubMed  CAS  Google Scholar 

  82. Liu Y, Ytrehus K, Downey JM: Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium J Mol Cell Cardiol 26: 661–668, 1994

    Article  PubMed  CAS  Google Scholar 

  83. Ytrehus K, Liu Y, Downey JM: Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 266: H1145–H1152, 1994

    PubMed  CAS  Google Scholar 

  84. Li Y, Kloner RA: Does protein kinase C play a role in ischemic preconditioning in rat hearts? Am J Physiol 37: H426-H431, 1995

    Google Scholar 

  85. Speechly-Dick ME, Mocanu MM, Yellon DM: Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res 75: 586–590, 1994

    PubMed  CAS  Google Scholar 

  86. Mitchell MB, Meng X, Ao L, Brown JM, Harken AH, Banerjee A: Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 76: 73–81, 1995

    PubMed  CAS  Google Scholar 

  87. Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, Manne D, Schachtele C: Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976*. J Biol Chem 268: 9194–9197, 1993

    PubMed  CAS  Google Scholar 

  88. Ron D, Chen C-H, Caldwell J., Jamieson L, Orr E, Mochly-Rosen D: Cloning of an intracellular receptor for protein kinase C: A homolog of the β subunit of G proteins. Proc Natl Acad Sci USA 91: 839–843, 1994

    Article  PubMed  CAS  Google Scholar 

  89. Denning MF, Dlugosz AA, Howett MK, Yuspa SH: Expression of an oncogenic rasHA gene in murine keratinocytes induces tyrosine phosphorylation and reduced activity of protein kinase Cδ3. J Biol Chem 268:26079–26081, 1993

    PubMed  CAS  Google Scholar 

  90. Li W, Mischak H, Yu J-C, Wang L-M, Mushinski JF, Heidaran MA, Pierce JH: Tyrosine phosphorylation of protein kinase C-δ in response to its activation. J Biol Chem 269: 2349–2352, 1994

    PubMed  CAS  Google Scholar 

  91. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischack H, Finkenzeller G, Marmé D, Rapp UR: Protein kinase Cα activates RAF-1 by direct phosphorylation. Nature 364: 249–252, 1993

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pucéat, M., Vassort, G. (1996). Signalling by protein kinase C isoforms in the heart. In: Lamers, J.M.J., Verdouw, P.D. (eds) Biochemistry of Signal Transduction in Myocardium. Developments in Molecular and Cellular Biochemistry, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1275-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1275-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8544-1

  • Online ISBN: 978-1-4613-1275-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics