Skip to main content

Abstract

According to a recent worldwide survey, liver cancer ranks seventh among tumors in males and ninth in females.1 Only a few agents have so far been associated more directly with the development of these tumors in man. Among them are: aflatoxins, cycasin, vinyl chloride, and estrogens, agents of quite different chemical nature. In experimental animals, mostly the rat and the mouse, quite a number of diverse chemicals have been demonstrated to produce liver tumors. Accordingly, such chemicals are called hepatocarcinogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Parkin, J. Stjernward, and C. S. Muirs, Estimates of cancer occurrance throughout the world. International Agency for Research on Cancer, Lyon, France (1986).

    Google Scholar 

  2. P. Bannasch and H. A. Müller, Lichtmikroskopische Untersuchungen über die Wirkung von N-Nitrosomorpholin auf die Leber von Ratte und Maus, Arzneim. Forsch., 14:805 (1964).

    CAS  Google Scholar 

  3. P. Bannasch, U. Brenner., H. Enzmann, and H. J. Hacker, Tigroid cell foci and neoplastic nodules in the liver of rats treated with a single dose of aflatoxin B1, Carcinogenesis 6: 1641 (1985).

    Article  PubMed  CAS  Google Scholar 

  4. H. C. Pitot and A. E. Sirica, The stages of initiation and promotion in hepatocarcinogenesis, Biochim. Biophys. Acta 605: 191 (1980).

    PubMed  CAS  Google Scholar 

  5. O. H. Iversen and E. G. Astrup, The paradigm of two-stage carcinogenesis: a critical attitude, Cancer Investig. 2: 51 (1984).

    Article  CAS  Google Scholar 

  6. C. Peraino, R. J. M. Fry, E. Staffeldt, and J. P. Christopher, Comparative enhancing effects of phenobarbital, amobarbital, diphenylhydantoin, and dichlorodiphenyl-trichloroethane on 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat, Cancer Res. 35:2884 (1975).

    PubMed  CAS  Google Scholar 

  7. H.-G. Neumann, the role of DNA damage in chemical carcinogenesis of aromatic amines, J. Cancer Res. Clin. Oncol. 112: 100 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. F. F. Kadlubar and F. A. Beland, Chemical properties of ultimate carcinogenic metabolites of arylamines and arylamides, in: R. G. Harvey, ed., Polycyclic Hydrocarbons and Carcinogenesis, ACS Symposium Series, No. 283, American Chemical Society, Washington (1985), pp 341.

    Chapter  Google Scholar 

  9. M. Ruthsatz, R. Franz, and H.-G. Neumann, DNA-damage, initiation and promotion by aromatic amines, in: Primary changes and control factors in carcinogenesis, T. Friedberg and F. Oesch, ed., Deutscher Fachschriften-Verlag, Wiesbaden (1986).

    Google Scholar 

  10. R. Franz, H.-R. Schulten, and H.-G. Neumann, Identification of nucleic acid adducts from trans-4-acetylaminostilbene, Chem.-Biol. Interactions 59: 281 (1986).

    Article  CAS  Google Scholar 

  11. R. Franz and H.-G. Neumann, Reaction of trans-4-N-acetoxy-N-acetylaminostilbene with guanosine, deoxyguanosine, RNA and DNA in vitro: predominant product is a cyclic N2,N3-guanine adduct, Chem.-Biol. Interactions in press.

    Google Scholar 

  12. D. Hilpert, W. Romen, and H.-G. Neumann, The role of partial hepatectomy and of promoters in the formation of tumors in non-target tissues of trans-4-acetylaminostilbene in rats, Carcinogenesis 4: 1519 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. J. D. Scribner and G. Koponen, Binding of the carcinogen 2-acetamidophenanthrene to rat liver nucleic acids: lack of correlation with carcinogenic activity, and failure of the hydroxamic acid ester model for in vivo activation, Chem.-Biol. Interactions 28: 201 (1979).

    Article  CAS  Google Scholar 

  14. J. D. Scribner and N. K. Mottet, DDT acceleration of mammary gland tumors induced in the male Sprague-Dawley rat by 2-acetamidophenanthrene, Carcinogenesis 2: 1235 (1981).

    Article  PubMed  CAS  Google Scholar 

  15. N. K. Scribner, K. S. Rector, and B. A. Woodworth, Relative orders of initiating potencies of four aromatic amides may be similar in target and in non-target tissues, Proc. Third Intern. Conference on Carcinogenic and Mutagenic N-Substituted Aryl Compounds, Detroit (1987).

    Google Scholar 

  16. R. C. Gupta and N. R. Dighe, Formation and removal of DNA adducts in rat liver treated with N-hydroxy derivatives of 2-acetylaminofluorene, 4-acetylaminobiphenyl, and 2-acetylaminophenanthrene, Carcinogenesis 5: 343 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. G. P. Warwick, The covalent binding of metabolites of tritiated 2-methyl-4-dimethylaminoazobenzene to rat liver nucleic acids and proteins, and the carcinogenicity of the unlabeled compound in partially hepatectomized rats, Eur. J. Cancer 3: 227 (1967).

    PubMed  CAS  Google Scholar 

  18. T. Kitagawa, H. C. Pitot, E. C. Miller, and J. A. Miller, Promotion by dietary phenobarbital of hepatocarcinogenesis by 2-methyl-N,N-dimethyl-4-aminoazobenzene in the rat, Cancer Res. 39: 112 (1979).

    PubMed  CAS  Google Scholar 

  19. R. Daoust, Toxic effects of 2-methyl-4-dimethylaminoazobenzene in normal and partially hepatectomized rats, Chem.-Biol. Interactions 48: 221 (1984).

    Article  CAS  Google Scholar 

  20. R. Schulte-Hermann, Tumor promotion in the liver, Arch. Toxicol. 57: 147 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. E. Farber and R. Cameron, The sequential analysis of cancer development, Adv. Cancer Res. 31: 125 (1980).

    Article  PubMed  CAS  Google Scholar 

  22. A. K. Laird and A. D. Barton, Cell growth and the development of tumours, Nature (London) 183: 1655 (1959).

    Article  CAS  Google Scholar 

  23. J. C. Arcos and M. F. Argus, Chemical Induction of Cancer, Vol. II B, Academic Press, London (1974), pp 49.

    Google Scholar 

  24. B. Flaks, Changes in the fine structure of rat hepatocytes during the early phases of chronic 2-acetylaminofluorene intoxication, Chem.-Biol. Interactions 2: 129 (1970).

    Article  CAS  Google Scholar 

  25. R. E. Albert, F. J. Burns, L. Bilger, D. Gardner, and W. Troll, Cell loss and proliferation induced by N-2-fluorenylacetamide in the rat liver in relation to hepatoma induction, Cancer Res. 32: 2172 (1972).

    PubMed  CAS  Google Scholar 

  26. P. Marquardt, W. Romen, and H.-G. Neumann, Tissue specific acute toxic effects of the carcinogen trans-4-dimethylaminostilbene, Arch. Toxicol. 56: 151 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. A. Pfeifer and H.-G. Neumann, Organ specific acute toxicity of the carcinogen trans-4-acetylaminostilbene is not correlated with macromolecular binding, Chem.-Biol. Interactions 59: 185 (1986).

    Article  CAS  Google Scholar 

  28. A. Stier, R. Clauss, A. Lücke, and I. Reitz, Radicals in carcinogenesis by aromatic amines, in: D. C. H. McBrien and T. F. Slater, eds.. Free radicals, lipid peroxidation and cancer, Academic Press, London, New York (1982).

    Google Scholar 

  29. C. V. Smith and J. R. Mitchell, Acetaminophen hepatotoxicity invivo is not accompanied by oxidant stress, Biochim. Biophys. Res. Commun. 133: 329 (1985).

    Article  CAS  Google Scholar 

  30. J. Kuchlbauer, W. Romen, and H.-G. Neumann, Syncarcinogenic effects on the initiation of rat liver tumors by trans-4-acetylaminostilbene and 2-acetylaminofluorene, Carcinogenesis 6: 1337 (1985).

    Article  PubMed  CAS  Google Scholar 

  31. P. Cikryt, Cytosolic binding proteins for aromatic hydrocarbons and their affinity for aromatic amines, in: T. Friedberg and F. Oesch, eds.. Primary changes and control factors in carcinogenesis, Deutscher Fachschriften-Verlag, Wiesbaden (1986).

    Google Scholar 

  32. M. Göttlicher and P. Cikryt, Induction of the aromatic hydrocarbon receptor and of drug metabolizing enzymes by various aromatic amines in rat liver, Naunyn Schmiedeberg’s Arch. Pharmacol. 335:R8 Suppl. (1987).

    Article  Google Scholar 

  33. H.-G. Neumann, The metabolism of repeatedly administered trans-4-dimethylaminostilbene and 4-dimethylaminobibenzyl, Z. Krebsforsch. 79: 60 (1973).

    Article  CAS  Google Scholar 

  34. A. Aström and J. W. DePierre, Characterization of the induction of drug metabolizing enzymes by 2-acetylaminofluorene, Biochim. Biophys. Acta 673: 225 (1981).

    PubMed  Google Scholar 

  35. D. W. Nebert, N. M. Jensen, J. W. Perry, and T. Oka, Association between ornithine decarboxylase induction and the Ah locus in mice treated with polycyclic aromatic compounds, J. Biol. Chem. 255: 6836 (1980).

    PubMed  CAS  Google Scholar 

  36. M. Göttlicher and P. Cikryt, Induction of ornithine decarboxylase by aromatic amines in rat liver, Cancer Letters 35: 65 (1987).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Neuman, HG. (1988). Hepatocarcinogens. In: Roberfroid, M.B., Préat, V. (eds) Experimental Hepatocarcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0957-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0957-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8264-8

  • Online ISBN: 978-1-4613-0957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics