Skip to main content

Phylogeny of Early Vertebrate Skeletal Induction and Ossification Patterns

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 22))

Abstract

The past 40 years has witnessed the demise of paleontology as a panacea with the ability to vindicate great phylogenetic theories. Today the role of fossils has been quite sharply defined (e.g., Hennig, 1965; Schaeffer et al., 1972; Nelson, 1978; Gaffney, 1979; Cracraft, 1979; Patterson, 1981a,b). The fossil record nevertheless provides useful data by refuting putative synapomorphies and by revealing nonhomology among living taxa, by suggesting sequential acquisitions of characters, and by providing supplemental biogeographic data (Patterson, 1981a). In these regards, fossils perform like newly discovered Recent taxa, but the paleontological data are potentially more dynamic in adding the element of geological time (hence giving minimum dates for taxic divergence and for biogeographic and other evolutionary events). Furthermore, the chances of discovering phylogenetically intermediate taxa (whether they are called “sister groups,” “ancestors,” “stem taxa,” “missing links,” or whatever) are inherently greater in fossil biotas than in Recent ones (vide the taxic paucity of “living fossils,” such as monotremes, coelacanths, cladistians [polypterids], agnathans, etc., versus the relative abundance of primitive Mesozoic mammals, fossil sarcopterygians, “palaeoniscoids,” and Paleozoic agnathans).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beard, J., 1888, The teeth of myxinoid fishes, Anat. Anz. 3: 169–172.

    Google Scholar 

  • Beard, J., 1889, Morphological studies No. 3. The nature of the teeth of marsipobranch fishes, Zool. Jahrb. 3: 727–752.

    Google Scholar 

  • Behrends, G., 1892, Ueber Hornzähne, Nova Acta Leopold. Carol. 58: 437–475.

    Google Scholar 

  • Benda, C., 1882, Die Dentinbildung in den Hautzahmen der Selachier, Arch. Mikrodk. Anat. 20 (2): 246–270.

    Google Scholar 

  • Bendix-Almgreen, S. E., 1983, Carcharodon megalodon from the Upper Miocene of Denmark, with comments on elasmobranch tooth enameloid: Coronoin, Bull. Geol. Soc. Denmark 32: 1–32.

    Google Scholar 

  • Benoit, J. A. A., and Schowing, J., 1970, Morphogenesis of the neurocranium, in: Tissue Interactions during Organogenesis (E. Wolff, ed.), pp. 105–140, Gordon & Breach, New York.

    Google Scholar 

  • Bertin, L., 1958, Ecailles et sclérification dermiques, in: Traité de Zoologie, Tome XIII (Agnathes et Poissons) ( P. P. Grassé, ed.), pp. 482–504, Masson, Paris.

    Google Scholar 

  • Bujard, E., 1931, Cartilage et os, Bull. Histol. Appl. Physiol. Pathol. 8 (9): 265–271.

    Google Scholar 

  • Chibon, P., 1970, L’Origine de l’organe adamantin des dents. Etude au moyen du marquage nucléaire de l’ectoderme stomodeal, Ann. Embryol. Morphogen. 3 (2): 203–213.

    Google Scholar 

  • Chibon, P., 1974, Un systéme morphogénétique remarquable: La crête neurale des vertébrés, Ann. Biol. 13: 459–480.

    Google Scholar 

  • Cracraft, J., 1979, Phylogenetic analysis, evolutionary models, and paleontology, in: Phylogenetic Analysis and Paleontology ( J. Cracraft and N. Eldredge, eds.), pp. 7–39, Columbia University Press, New York.

    Google Scholar 

  • Daget, J., 1965, Le crâne des téléostéens, Mem. Mus. Natl. Hist. Nat. Paris N. S. (A) 31: 163–341.

    Google Scholar 

  • Dawson, J. A., 1963, The oral cavity, the “jaws” and the horny teeth of Myxine glutinosa, in: The Biology of Myxine ( A. Brodol and R. Fänge, eds.), pp. 231–255, Universitetsforlaget, Oslo.

    Google Scholar 

  • Dean, B., 1895, Fishes, Living and Fossil, Macmillan, New York.

    Google Scholar 

  • Dean, B., 1909, Studies on fossil fishes (sharks, chimaeroids and arthrodires), Mem. Am. Mus. Nat. Hist. 9: 209–287.

    Google Scholar 

  • Denison, R. H., 1951, The exoskeleton of early Osteostraci, Fieldiana, Geol. 11(3/4):199-218.

    Google Scholar 

  • Denison, R. H., 1963, The early history of the vertebrate calcified skeleton, Clin. Orthopaed. 31: 141–152.

    CAS  Google Scholar 

  • Denison, R. H., 1967, Ordovician vertebrates from western United States, Fieldiana, Geol. 16 (6): 131–192.

    Google Scholar 

  • Denison, R. H., 1973, Growth and wear of the shield in Pteraspidae (Agnatha), Palaeontogr. Abt. A 143: 1–10.

    Google Scholar 

  • Denison, R., 1978, Placodermi, in: Handbook of Paleoichthyology ( H. P. Schultze, ed.), Vol. 2, pp. 128, Gustav Fischer, Stuttgart.

    Google Scholar 

  • Forey, P. L., 1980, Latimeria: A Paradoxical Fish, Proc. R. Soc. Lond. B 208 (1172): 369–384.

    Google Scholar 

  • Forey, P. L., 1984, Yet more reflections on agnathan-gnathostome relationships, J. Vert. Paleontol. 4 (3): 330–343.

    Google Scholar 

  • Gaffney, E. S., 1979, Tetrapod monophyly: A phylogenetic analysis, Bull. Carnegie Mus. Nat. Hist. 13: 92–105.

    Google Scholar 

  • Gardiner, B. G., 1984a, The relationship of placoderms, J. Vert. Paleontol. 4 (3): 379–395.

    Google Scholar 

  • Gardiner, B. G., 1984b, The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia, Br. Mus. (Nat. Hist.) Bull. (Geol.) 37: 173–427.

    Google Scholar 

  • Goodrich, E. S., 1909, Cyclostomes and fishes, in: A Treatise on Zoology (E. R. Lankester, ed.), Vol. 9, Vertebrata Craniata, pp. 518, A. + C. Black, London.

    Google Scholar 

  • Goujet, D. F., 1984, Placoderm interrelationships: A new interpretation, with a short review of placoderm classifications, Proc. Linn. Soc. NSW 107: 211–243.

    Google Scholar 

  • Gross, W., 1930, Die Fische des mittleren Old Red Süd-Livlands, Geol. Palaeontol. Abh. N. F. 18: 123–156.

    Google Scholar 

  • Gross, W., 1936, Histologische Studien am Außenskelett fossiler Agnathen und Fische, Palaeontogr. Abt. A 83: 1–60.

    Google Scholar 

  • Gross, W., 1961, Aufbau des Panzers obersilurischer Heterostraci und Osteostraci Norddeutschlands (Geschiebe) und Oesels, Acta Zool. 42: 73–150.

    Google Scholar 

  • Gross, W., 1966, Kleine Schuppenkunde, Neves Jahrh. Geol. Palaeontol. Abh. 125: 29–48.

    Google Scholar 

  • Hall, B. K., 1975, Evolutionary consequences of skeletal differentiation, Am. Zool. 15: 329–350.

    Google Scholar 

  • Hall, B. K., 1978, Developmental and Cellular Skeletal Biology,Academic Press, New York. Hall, B. K., 1980, Chondrogenesis and osteogenesis of cranial neural crest cells, in: Current

    Google Scholar 

  • Research Trends in Prenatal Craniofacial Development (R. M. Pratt and R. L. Christiansen, eds.), pp. 47–64, Elsevier/North-Holland, New York.

    Google Scholar 

  • Hall, B. K., 1982a, Tissue interactions and chondrogenesis, in: Development, Differentiation and Growth ( B. K. Hall, ed.), pp. 187–222, Academic Press, New York.

    Google Scholar 

  • Hall, B. K., 1982b, How is mandibular growth controlled during development and evolution?, J. Craniofac. Genet. Dev. Biol. 2: 45–49.

    PubMed  CAS  Google Scholar 

  • Hall, B. K., 1983, Epigenetic control in development and evolution, in: The British Society for Developmental Biology, Development and Evolution ( B. C. Goodwin, N. Holder, and C. G. Wylie, eds.), pp. 353–379, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hall, B. K., and Hanken, J., 1985, Foreward, in: The Development of the Vertebrate Skull (G. R. de Beer, ed.), pp. vii-xxviii, University of Chicago Press, Chicago.

    Google Scholar 

  • Halstead, L. B., 1969a, Calcified tissues in the earliest vertebrates, Cale. Tiss. Res. 3: 107–124.

    CAS  Google Scholar 

  • Halstead, L. B., 1969b, The Pattern of Vertebrate Evolution, Oliver and Boyd, Edinburgh. Halstead, L. B., 1974, Vertebrate Hard Tissues, Wykeham, London.

    Google Scholar 

  • Halstead, L. B., 1982, Evolutionary trends and the phylogeny of the Agnatha, in: Problems of Phylogenetic Reconstruction, (Systematics Association Special Volumes, No. 21, K.

    Google Scholar 

  • A. Joysey and A. E. Friday eds.), pp. 159–196, Academic Press, London.

    Google Scholar 

  • Halstead-Tarlo, B. J., and Halstead, L. B., 1965, The origin of teeth, Discovery 26:20–26.

    Google Scholar 

  • Hardisty, M. W., 1979, Biology of the Cyclostomes, Chapman & Hall, London.

    Google Scholar 

  • Hardisty, M. W., 1982, Lampreys and hagfishes: Analysis of cyclostome relationships, in: The Biology of Lampreys, vol. 4B (M. W. Hardisty and I. C. Potter, eds.), pp. 165–200, Academic Press, New York.

    Google Scholar 

  • Hennig, W., 1965, Phylogenetic Systematics, Annu. Rev. Entomol. 10: 97–116.

    Google Scholar 

  • Herold, R. C., Grawer, H. T., and Chistner, P., 1980, Immunohistochemical localization of amelogenins in enameloid of lower vertebrate teeth, Science 207: 1357–1358.

    PubMed  CAS  Google Scholar 

  • Hinchliffe, J. R., and Johnson, D. R., 1980, The Development of the Vertebrate Limb, Clarendon Press, Oxford.

    Google Scholar 

  • Holmgren, N., 1940, Studies on the head in fishes. Part I, Development of the skull in sharks and rays, Acta Zool. 21: 51–257.

    Google Scholar 

  • Holmgren, N., 1942, Studies on the head in fishes: Part III. The phylogeny of elasmobranch fishes, Acta Zool. Stockholm 23: 129–261.

    Google Scholar 

  • Holtzer, H., and Detwiler, S. R., 1953, An experimental analysis of the development of the spinal column. III. Induction of skeletogenous cells, J. Exp. Zool. 123: 335–366.

    Google Scholar 

  • Hörstadius, S., 1950, The Neural Crest. Its Properties and Derivatives in the Light of Ex- perimental Research, Oxford University Press, London.

    Google Scholar 

  • Jacobson, W., and Fell, H. B., 1941, The developmental mechanics and potencies of the undifferentiated mesenchyme of the mandible, Q. J. Microscop. Sci. 82: 563–586.

    Google Scholar 

  • Janvier, P., 1981, The phylogeny of the Craniata, with particular reference to the significance of fossil “Agnathans,” J. Vert. Paleontol. 1 (2): l21–159.

    Google Scholar 

  • Janvier, P., 1984, The relationships of the Osteostraci and Galeaspida, J. Vert. Paleontol. 4 (3): 344–358.

    Google Scholar 

  • Jarvik, E., 1959, Dermal fin-rays and Holmgren’s principle of delamination, K. Svenska Vetensk. Akad. Handl. (4) 6: 1–51.

    Google Scholar 

  • Jollie, M., 1968, Some implications of the acceptance of a delamination principle, in: Nobel Symposium 4, Current Problems in Lower Vertebrate Phylogeny (T. Orvig, ed.), pp. 89–107, Almquist & Wiksell, Stockholm.

    Google Scholar 

  • Jollie, M., 1971, Some developmental aspects of the head skeleton of the 35–37 mm Squalus acanthias foetus, J. Morphol. 133: 17–40.

    PubMed  CAS  Google Scholar 

  • Kemp, N. E., and Westrin, S. K., 1979, Ultrastructure of calcified cartilage in the endoskeletal tesserae of sharks, J. Morphol. 160: 75–102.

    PubMed  CAS  Google Scholar 

  • Kerr, T., 1960, Development and structure of some actinopterygian and urodele teeth, Proc. Zool. Soc. Lond. 133: 401–422.

    Google Scholar 

  • Krebs, B., 1961, Uber einen Flossenstacheln von Gyracanthus, (Acanthodii) aus dem Oberkarbon Englands, Ecl. Geol. HeIv. 53: 811–827.

    Google Scholar 

  • Krejsa, R. J., 1979, The comparative anatomy of the integumental system, in: Hyman’s Comparative Vertebrate Anatomy ( M. H. Wake, ed.), 3rd ed., pp. 112–191, University of Chicago, Chicago.

    Google Scholar 

  • Lash, J. W., Holtzer, S., and Holtzer, H., 1957, An experimental analysis of the development of the spinal column. VI. Aspects of cartilage induction, Exp. Cell Res. 13: 292–303.

    PubMed  CAS  Google Scholar 

  • Le Douarin, N., 1982, The Neural Crest, Cambridge University Press, London.

    Google Scholar 

  • Levine, P. T., Glimcher, M. J., Seyer, J. M., Huddleston, J. I., and Hein, J. W., 1966, Non-collagenous nature of the proteins of shark enamel, Science 154: 1192–1194.

    PubMed  CAS  Google Scholar 

  • Lorch, I. J., 1949, The distribution of alkaline phosphatase in relation to calcification in Scyliorhinus canicula. Development of the endoskeleton, Q. J. Microscop. Sci. 90: 381–390.

    Google Scholar 

  • Løvtrup, S., 1977, The Phylogeny of Vertebrata, Wiley, London.

    Google Scholar 

  • Maisey, J. G., 1974, Chondrichthyan Dorsal Spines and the Relationships of Spinate Chondrichthyans, Ph. D. Thesis, University of London.

    Google Scholar 

  • Maisey, J. G., 1975, The interrelationships of phalacanthous selachians, Neues Jahrb. Geol. Palaeontol. 9: 553–567.

    Google Scholar 

  • Maisey, J. G., 1977, Structural notes on a cladoselachian dorsal spine, Neues Jahrb. Geol. Palaeontol. Monatsh. H. L 1977: 47–55.

    Google Scholar 

  • Maisey, J. G., 1978, Growth and form of finspines in hybodont sharks, Palaeontology 21 (3): 657–666.

    Google Scholar 

  • Maisey, J. G., 1979, Finspine morphogenesis in squalid and heterodontid sharks, Zool. J. Linn. Soc. 66: 161–183.

    Google Scholar 

  • Maisey, J. G., 1984, Chondrichthyan phylogeny: A look at the evidence, J. Vert. Paleontol. 4 (3): 359–371.

    Google Scholar 

  • Maisey, J. G., 1986, Heads and tails: A chordate phylogeny, Cladistics 2: 201–256.

    Google Scholar 

  • Mallatt, J., 1984, Early vertebrate evolution: Pharyngeal structure and the origin of gnathostomes, J. Zool. 204 (2): 169–183.

    Google Scholar 

  • Markert, F., 1896, Die Flossenstacheln von Acanthias; ein Beitrag zur Kenntriss der Hartsubstanzgebilde der Elasmobranchier, Zool. Jahrb. Anat. 9: 665–730.

    Google Scholar 

  • Miles, R. S., 1973, Relationships of acanthodians, in: Interrelationships of Fishes ( P. H. Greenwood, R. S. Miles, and C. Patterson, eds.), pp. 63–103, Academic Press, London.

    Google Scholar 

  • Moss, M. L., 1964a, The phylogeny of mineralized tissues, Int. Rev. Gen. Exp. Zool. 1: 297–331.

    Google Scholar 

  • Moss, M. L., 1964b, Development of cellular dentine and lepidosteal tubules in the Bowfin, Amia calva, Acta Anat. 58: 333–354.

    PubMed  CAS  Google Scholar 

  • Moss, M. L., 1968a, Bone, dentine, and enamel and the evolution of vertebrates, in: Biology of the Mouth, pp. 37–65, American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Moss, M. L., 1968b, The origin of vertebrate calcified tissues, in: Current Problems of Lower Vertebrate Phylogeny ( T. Orvig, ed.), pp. 359–371, Almquist and Wiksell, Stockholm.

    Google Scholar 

  • Moss, M. L., 1970, Enamel and bone in shark teeth: With a note on fibrous enamel in fishes, Acta Anat. 77 (2): 161–187.

    PubMed  CAS  Google Scholar 

  • Moss, M. J., 1977, Skeletal tissues in sharks, Am. Zool. 17: 335–342.

    Google Scholar 

  • Moy-Thomas, J., and Miles, R. S., 1971, Palaeozoic fishes, 2nd ed., W. B. Saunders, Philadelphia.

    Google Scholar 

  • Nelson, G., 1978, Ontogeny, phylogeny, paleontology, and the biogenetic law, Sysi. Zool. 27: 324–345.

    Google Scholar 

  • Noden, D. M., 1984, Craniofacial development: New views on old problems, Anat. Rec. 208: 1–13.

    PubMed  CAS  Google Scholar 

  • Ørvig, T., 1951, Histologic studies of placoderms and fossil elasmobranchs. I. The endoskeleton, with remarks on the hard tissues of lower vertebrates in geneal, Ark. Zool. 2 (2): 321–454.

    Google Scholar 

  • Ørvig, T., 1957, Paleohistological notes. 1. On the structure of the bone tissue in the scales of certain Palaeonisciformes, Ark. Zool. 10: 481–490.

    Google Scholar 

  • Ørvig, T., 1965, Paleohistological notes. II. Certain comments on the phyletic significance of acellular bone tissue in early vertebrates, Ark. Zool. 16: 551–556.

    Google Scholar 

  • Ørvig, T., 1967, Phylogeny of tooth tissues: Evolution of some calcified tissues in early vertebrates, in: Structural and Chemical Organization of Teeth, pp. 45–110, Academic Press, New York.

    Google Scholar 

  • Ørvig, T., 1968, The dermal skeleton: General considerations, in: Nobel Symposium 4, Current Problems in Lower Vertebrate Phylogeny (T. Orvig, ed.), Almquist & Wiksell, Stockholm, pp. 373–397.

    Google Scholar 

  • Ørvig, T., 1969, Cosmine and cosmine growth, Lethaia 2: 241–260.

    Google Scholar 

  • Ørvig, T., 1977, A survey of odontodes (`dermal teeth’) from developmental, structural, functional and phyletic points of view, in: Problems in Vertebrate Evolution (S. M. Andrews, R. S. Miles, and A. D. Walker, eds.), Linnean Society Symposium Series, Vol. 4, pp. 53–75.

    Google Scholar 

  • Parenti, L. R., 1986, The phylogenetic significance of bone types in euteleost fishes, Zool. J. Linn. Soc. 87: 37–51.

    Google Scholar 

  • Patterson, C., 1965, The phylogeny of the chimaeroids, Phil. Trans. Soc. Lond. B 249: 101–219.

    Google Scholar 

  • Patterson, C., 1977, The contribution of paleontology to teleostean phylogeny, in: Major Patterns in Vertebrate Evolution ( M. K. Hecht, P. C. Goody, and B. M. Hecht, eds.) pp. 579–643, Plenum Press, New York.

    Google Scholar 

  • Patterson, C., 1981a, Significance of fossils in determining evolutionary relationships, Annu. Rev. Ecol. Syst. 12: 195–223.

    Google Scholar 

  • Patterson, C., 198lb,Agassiz, Darwin, Huxley, and the fossil record of teleost fishes, Bull. Br. Mus. (Nat. Hist.) Geol. 35(3):213–224.

    Google Scholar 

  • Patterson, C., 1982a, Morphological Characters and Homology, in: Problems of Phylogenetic Reconstruction (Systematics Association Special Volume No. 21; K. A. Joysey and A. E. Friday, eds.), pp. 21–74, Academic Press, New York.

    Google Scholar 

  • Patterson, C., 1982b, Morphology and interrelationships of primitive Actinopterygian fishes, Am. Zool. 22: 241–259.

    Google Scholar 

  • Peignoux-Deville, J., Lallier, F., and Vidal, B., 1981, Mise en évidence de tissu osseux dans le squelette axial d’un chondrichthyen: La roussette (Scyliorhinus canicula), C. R. Acad. Sci. Paris III 292: 73–78.

    CAS  Google Scholar 

  • Peyer, B., 1937, Zähne und Gebiss, in: Handbuch de Vergleichenden Anatomie der Wirbelthiere (L. Bolk, E. Goppert, E. Kauius, and W. Lubosch, eds.), Vol. 3, pp. 49–114, Urban & Schwarzenberg, Berlin.

    Google Scholar 

  • Peyer, B., 1957, Uber die morphologische Deutung der Flossenstacheln einiger Haifische, Mitt. Naturforsch. Ges. Bern. N. F. 14: 159–176.

    Google Scholar 

  • Peyer, B., 1968, Comparative Odontology, University of Chicago Press, Chicago.

    Google Scholar 

  • Piez, K. A., 1980, Structure and function of collagen, in: Gene Families of Collagen and Other Proteins ( D. J. Prockop and J. Champre, eds.), pp. 143–160, Amsterdam, Else-vier.

    Google Scholar 

  • Poole, D. F. G., 1967, Phylogeny of tooth tissues: Enameloid and enamel in Recent vertebrates, with a note on the history of cementum, in: Structural and Chemical Organisation of Teeth, ( A. E. W. Miles, ed.), Vol. 1, pp. 111–149, Academic Press, New York.

    Google Scholar 

  • Poole, D. F. G., 1971, An introduction to the phylogeny of calcified tissues, in: Dental Morphology and Evolution ( A. A. Dahlber, ed.), pp. 65–79, University of Chicago Press, Chicago.

    Google Scholar 

  • Reif, W.-E., 1973, Morphologie und Ultrastruktur des Hai-“Schmelzes,” Zool. Scr. 2: 231–250.

    Google Scholar 

  • Reif, W.-E., 1979, Structural convergences between enameloid of actinopterygian teeth and of shark teeth, Scanning Electron Microsc. 2: 547–554, 546.

    Google Scholar 

  • Reif, W.-E., 1982, Evolution of dermal skeleton and dentition in vertebrates: The odontode regulation theory. Evol. Biol. 15: 287–368.

    Google Scholar 

  • Ritchie, A., 1964, New evidence on the morphology of the Norwegian Anaspida, Norsk. Videnskaps-Akad. 14: 1–21.

    Google Scholar 

  • Ritchie, A., 1980, The late Silurian Anaspid genus Rhyncholepis from Oesel, Estonia, and Ringerike, Norway, Am. Mus. Novit. 2699: 1–18.

    Google Scholar 

  • Romer, A. S., 1963, The ancient history of bone, Ann. N. Y. Acad. Sci. 109: 168–176.

    PubMed  CAS  Google Scholar 

  • Romer, A. S., 1964, Bone in early vertebrates, in: Bone Biodynamics (H. M. Frost, ed.) pp. 13–37, Little, Brown & Co., Boston.

    Google Scholar 

  • Rosen, D. E., Forey, P. L., Gardiner, B. G., and Paterson, C., 1981, Lungfishes, tetrapods, paleontology, and plesiomorphy, Bull. Am. Mus. Nat. Hist. 67 (4): 163–275.

    Google Scholar 

  • Schaeffer, B., 1961, Differential ossification in the fishes, Trans. N. Y. Acad. Sci. 23 (6): 501–504.

    PubMed  CAS  Google Scholar 

  • Schaeffer, B., 1975, Comments on the origin and basic radiation of the gnathostome fishes with particular reference to the feeding mechanism, Coll. Int. CNRS 218: 101–109.

    Google Scholar 

  • Schaeffer, B., 1977, The dermal skeleton in fishes, in: Problems in Vertebrate Evolution (S. M. Andrews, R. S. Miles, and A. D. Walker, eds.), Linnean Society Symposium Series, Vol. 4, pp. 25–52.

    Google Scholar 

  • Schaeffer, B., Hecht, M., and Eldredge, N., 1972, Phylogeny and paleontology, Evol. Biol. 6: 1–46.

    Google Scholar 

  • Schowing, J., 1968a, Influence inductrice de l’éncéphale embryonnaire sur le développement du crâne chez le poulet. I. Influence de l’excision des territoires nerveux antérieurs sur le développement crânien, J. Embryol. Exp. Morphol. 19: 9–22.

    PubMed  CAS  Google Scholar 

  • Schowing, J., 1968b, Influence inductrice de l’éncéphale embryonnaire sur développement du crâne chez le poulet. II. Influence de l’excision de la chorde et des territoires encéphaliques moyen et postérieur sur le développement crânien, J. Embryo!. Exp. Morphol. 19: 23–32.

    CAS  Google Scholar 

  • SchowingJ. 1968c, Influence inductrice de l’éncéphale embryonnaire sur développement du crâne chez le poulet. III. Mise en evidence du rôle inducteur de l’encéphale dans l’ostéogenése du crâne embryonnaire du poulet, J. Embryo!. Exp. Morphol. 19:83–94.

    CAS  Google Scholar 

  • Shellis, R. P., and Miles, A. E. W., 1974, Autoradiographic study of the formation of enameloid and dentine matrices in teleost fishes using tritiated amino acids. Proc. R. Soc. Lond. B 185: 51–72.

    Google Scholar 

  • Shellis, R. P., and Miles, A. E. E., 1976, Observations with the electron microscope on enameloid formation in the common eel (Anguilla anguilla; Teleostei), Proc. R. Soc. Lond. B 194: 253–269.

    Google Scholar 

  • Shellis, R. P., and Poole, D. F. G., 1978, The structure of the dental hard tissues of the coelacanthid fish Latimeria chalumnae Smith, Arch. Oral Biol. 23: 1105–1113.

    PubMed  CAS  Google Scholar 

  • Slavkin, H. C., 1985, Current perspectives on enamel proteins, in: The Chemistry and Biology of Mineralized Tissues ( William T. Butler, ed.), pp. 237–239, Ebsco Media, Birmingham, Alabama.

    Google Scholar 

  • Slavkin, H. C., Graham, E., Zeichner-David, M., and Hildemann, W., 1983a, Enamel-like antigens in hagfish: Possible evolutionary significance, Evolution 37 (2): 404–412.

    CAS  Google Scholar 

  • Slavkin, H. C., Samuel, N., Bringas, P., Jr., Nanci, A., and Santos, V., 1983b, Selachian tooth development: II. Immunolocalization of amelogenin polypeptides in epithelium during secretory amelogenesis in Squalus acanthias, J. Craniofac. Genet. Dev. Biol. 3 (1): 43–52.

    PubMed  CAS  Google Scholar 

  • Smith, M. M., 1978, Enamel in the oral teeth of Latimeria chalumnae (Pisces: Actinistia): A scanning electron microscope study, J. Zool. Lond. 185: 355–369.

    Google Scholar 

  • Smith, M. M., 1979, SEM of the enamel layer in oral teeth of fossil and extant crossopterygian and dipnoan fishes, Scanning Electron Microsc. 2: 483–489.

    Google Scholar 

  • Smith, M. M., and Miles, A. E. W., 1969, An autoradiographic investigation with the light microscope of proline-H3 incorporation during tooth development in the crested newt (Triturus cristatus), Arch. Oral Biol. 14: 479–490.

    PubMed  CAS  Google Scholar 

  • Smith, M. M., and Miles, A. E. W., 1971, The ultrastructure of odontogenesis in larval and adult urodeles: Differentiation of the dental epithelial cells, Z. Zellforsch. Mikroskop. Anat. 121: 470–498.

    CAS  Google Scholar 

  • Stensiö, E., 1961, Permian vertebrates, in: Geology of the Arctic, ( G. O. Raasch, ed.), pp. 231–247, University of Toronto Press, Toronto.

    Google Scholar 

  • Stensiö, E. A., 1968, The cyclostomes with special reference to the diphyletic origin of the Petromyzontida and Myxinoidea, in: Nobel Symposium 4, Current Problems of Lower Vertebrate Phylogeny (T. Orvig, ed.), pp. 13–71, Almquist & Wiksell, Stockholm.

    Google Scholar 

  • Stromer, E., 1927, Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wusten Agyptens. II. Wirbeltier-Reste der Baharije-Stufe (understes Cenoman). 9. Die Plagiostomen, mit einem Anhag über käno-und mesozoische Rückenflossenstacheln von Elasmobranchiern, Abh. Bayer. Akad. Wiss. 31 (5): 1–69.

    Google Scholar 

  • Strudel, G., 1953, Conséquences de léxcision de troncons du tube nerveux sur la morphogenése de l’embryon de poulet et sur la différenciation de ses organes: Contribution à la genése de l’orthosympathique, Ann. Sci. Nat. (Zool.) 15: 251–329.

    Google Scholar 

  • Tarlo, L. B. H., 1963, Aspidin: The precursor of bone, Nature 199: 46–48.

    PubMed  CAS  Google Scholar 

  • Tarlo, L. B. H., 1964, The origin of bone, in: Bone and Tooth ( H. J. J. Blackwood, ed.), pp. 3–17, Pergamon Press, Oxford.

    Google Scholar 

  • Turner, S., 1985, Remarks on the early history of chondrichthyans, thelodonts, and some “higher elasmobranchs,” New Zealand Geological Survey Record 9, Homibrooh Symposium Extended Abstracts.

    Google Scholar 

  • Tyler, M. S., and Hall, B. K., 1977, Epithelial influences on skeletogenesis in the mandible of the embryonic chick, Anat. Rec. 188: 229–240.

    PubMed  CAS  Google Scholar 

  • Wangsjö, G., 1952, The Downtonian and Devonian vertebrates of Spitzbergen. IX. Morphologic and systematic studies of the Spitzbergen cephalaspids, Skrifter-Norsk Polarist. 97: 1–612.

    Google Scholar 

  • White, E. I., 1958, Original environment of the craniates, in: Studies on Fossil Vertebrates ( T. S. Westoll, ed.), pp. 212–234, Athlone Press, London.

    Google Scholar 

  • White, E. I., 1973, Form and growth of Belgicaspis (Heterostraci), Palaeontogr. Abt. A 143: 11–24.

    Google Scholar 

  • Wiley, E. O., 1981, Phylogenetics, Wiley, New York.

    Google Scholar 

  • Young, G. C., 1986, The relationships of placoderm fishes, Zool. J. Linn. Soc. 88: 1–57.

    Google Scholar 

  • Zangerl, R., 1966, A new shark of the family Edestidae, Ornithoprion hertwigi from the Pennsylvanian Mecca and Logan Quarry Shales of Indiana, Fieldiana, Geol. 16(1):1–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Maisey, J.G. (1988). Phylogeny of Early Vertebrate Skeletal Induction and Ossification Patterns. In: Hecht, M.K., Wallace, B., Prance, G.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0931-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0931-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8251-8

  • Online ISBN: 978-1-4613-0931-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics