Skip to main content

The External Pallidum and the Subthalamic Nucleus Send Convergent Synaptic Inputs onto Single Neurones in the Internal Pallidal Segment in Monkey:Anatomical Organization and Functional Significance

  • Chapter
The Basal Ganglia IV

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 41))

Abstract

The recent introduction of powerful neuroanatomical techniques combined with extracellular recordings of neurones in the basal ganglia of normal animals and experimental models of basal ganglia diseases, have led to the construction of models that specify the hodology, chemistry and relative activity of the interconnected structures in the basal ganglia-thalamocortical circuits (see Albin et al., 1989; Alexander and Crutcher, 1990; DeLong, 1990 for reviews). According to these models, the information flow is transmitted along a “direct” and an “indirect” routes to the output structures of the basal ganglia, i.e. the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr). The “direct” pathway arises largely from the GABA/substance P spiny neurones in the striatum that send an inhibitory projection to GPi and SNr. On the other hand, the “indirect” pathway arises from the GABA/enkephalin spiny neurones in the striatum that send an inhibitory projection to the external pallidum (GPe). The latter gives rise to a GABAergic input to the subthalamic nucleus which in turn sends a glutamatergic excitatory projection to GPe, GPi and SNr. Then, the pallidal and nigral output cells send the information to the thalamocortical neurones in the ventrolateral nucleus of the thalamus and to the tegmental pedunculopontine nucleus. A series of recent anatomical findings suggest that the inhibitory output from the GPe reaches the output structures of the basal ganglia, not only via the intercalated subthalamic nucleus, but also directly (Kitai and Kita, 1987b; Staines, 1988; Smith et al., 1988; Hazrati et al., 1990; Kincaid et al., 1990; Bolam and Smith, 1992; Smith et al., 1992). Furthermore, ultrastructural findings obtained in rodents suggest that the terminals from the globus pallidus (homologue of GPe in primates) occupy a strategic position on the perikaryon and the proximal dendrites of neurones in the entopeduncular nucleus (homologue of GPi in primates) and the SNr (Smith and Bolam, 1990, 1991; Bolam and Smith, 1992). However, because they were thought to exert a minor influence over the activity in GPi and SNr, the GPe-GPi and GPe-SNr projections were not included in the scheme of the basal ganglia circuitry described above (Albin et al., 1989; Alexander and Crutcher, 1990; DeLong, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin, R.L., Young, A.B., and Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, TINS 12:366–375.

    PubMed  CAS  Google Scholar 

  • Alexander, G.E., and Crutcher, M.D., 1990, Functional architecture of basal ganglia circuits:neural substrates of parallel processing, TINS 13:266–271.

    PubMed  CAS  Google Scholar 

  • Bolam, J.P., Ingham, C.A., 1990, Combined morphological and histochemical techniques for the study of neuronal microcircuits, in: “Handbook of Chemical Neuroanatomy, Analysis of Neuronal Microcircuits and Synaptic Interactions,” A. Bjòrklund, T Hökfelt, F.G. Wouterlood, A.N. van den Pol, eds., Elsevier, Amsterdam, pp. 125–198.

    Google Scholar 

  • Bolam, J.P., Smith, Y., 1992, The striatum and the globus pallidus send convergent synaptic inputs onto single cells in the entopeduncular nucleus of the rat: A double anterograde labelling study combined with postembedding immunocytochemistry for GABA, J. Comp. Neurol 321:456–476.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier, G., and Deniau, J.M., 1990, Disinhibition as a basic process in the expression of striatal functions, TINS 13:277–280.

    PubMed  CAS  Google Scholar 

  • DeLong, M.R., 1990, Primate models of movement disorders of basal ganglia origin, TINS 13:281–285.

    PubMed  CAS  Google Scholar 

  • DeLong, M.R., Crutcher, M.D., and Georgopoulos, A.P., 1985, Primate globus pallidus and subthalamic nucleus:functional organization, J. Neurophysiol. 53:530–543.

    PubMed  CAS  Google Scholar 

  • Falls, W.M., Park, M.R., and Kitai, ST., 1983, An intracellular HRP study of the rat globus pallidus. II.Fine structural characteristics and synaptic connections of medially located large GP neurons, J. Comp. Neurol. 220:229–245.

    Article  Google Scholar 

  • Féger, J., Robledo, P., and Renwart, N., 1991, The subthalamic nucleus:new data, new questions, in: “The Basal Ganglia III,” G. Bernardi, M.B. Carpenter, G. Dichiara, M. Morelli and P. Stanzione, eds., Plenum Press, New York, pp. 99–108.

    Google Scholar 

  • Flaherty, A.W., and Graybiel, A.M., 1991, Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations, J. Neurophysiol. 66:1249–1263.

    PubMed  CAS  Google Scholar 

  • Flaherty, A.W., Graybiel, A.M., 1992, Multiple stages of sensorimotor processing in the primate basal ganglia, Proceedings of the IVth International Basal Ganglia Society meeting, p. 29.

    Google Scholar 

  • Francois, C, Percheron, G., Yelnik, J., and Heyner, S., 1984, A Golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons, J. Comp. Neurol. 227:182–199.

    Article  PubMed  Google Scholar 

  • Gerfen, C.R., 1992, The neostriatal mosaic:Multiple levels of compartmental organization in the basal ganglia, Ann. Rev. Neurosci. 15:285–320.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen C.R., and Sawchenko, P.E., 1984, An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals:Immunohistochemical localization of anaxonally transported plant lectin, Phaseolus vulgaris-leucoagglutinin (PHA-L), Brain Res. 290:219–238.

    Article  PubMed  CAS  Google Scholar 

  • Hamada, I., and DeLong, M.R., 1992a, Excitotoxic lesions of the primate subthalamic nucleus result in transient dyskinesias of the contralateral limbs, J. Neurophysiol. 68:1850–1858.

    PubMed  CAS  Google Scholar 

  • Hamada, I., and DeLong, M.R., 1992b, Excitotoxic lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding, J. Neurophysiol. 68:1859–1866.

    PubMed  CAS  Google Scholar 

  • Hazrati, L-N., Parent, A., Mitchell, S., and Haber, S.N., 1990, Evidence for interconnections between the two segments of the globus pallidus in primates:a PHA-L anterograde tracing study, Brain Res. 533:171–175.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson, A.J., Penke, B., Erdei, A., Chubb, I.W., and Somogyi, P., 1985, Antisera to g-aminobutyric acid.I. Production and characterization using a new model system, J. Histochem. Cytochem. 33:229–239.

    Article  PubMed  CAS  Google Scholar 

  • Horak, F.B., and Anderson, M.E., 1984, Influence of globus pallidus on arm movements in monkeys. I.Effects of kainic acid-induced lesions, J. Neurophysiol. 52:290–304.

    PubMed  CAS  Google Scholar 

  • Ingham, C.A., 1992, Immunocytochemistry II: Post-embedding staining, in: “Experimental Neuroanatomy:A Practical Approach,” J.P. Bolam, ed., Oxford University Press, Oxford, pp.129–151.

    Google Scholar 

  • Izzo, P.N., 1991, A note on the use of biocytin in anterograde tracing studies in the central nervous system:application at both light and electron microscopic level, J. Neurosci. Methods 36:155–166.

    Article  PubMed  CAS  Google Scholar 

  • Kincaid, A.E., Newman, S.W., Young, A.B., and Penney, J.B., 1990, Evidence for a projection from the globus pallidus to the entopeduncular nucleus in the rat, Neurosci. Lett. 128:121–125.

    Article  Google Scholar 

  • King, M.A., Louis, P.M., Hunter, B.E., and Walker, D.W., 1989, Biocytin:a versatile neuroanatomical tract-tracing alternative, Brain Res. 497:361–367.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., 1992, Responses of globus pallidus neurons to cortical stimulation:intracellular study in the rat, Brain Res. 589:84–90.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., and Kitai, S.T., 1987, Efferent projections of the subthalamic nucleus in the rat:Light and electron microscopic analysis with the PHA-L method, J. Comp. Neurol. 260:435–452.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., and Kitai, ST., 1991, Intracellular study of rat globus pallidus neurons:membrane properties and responses to neostriatal, subthalamic and nigral stimulation, Brain Res. 564:296–305.

    Article  PubMed  CAS  Google Scholar 

  • Kitai, ST, Kita, H., 1987a, Anatomy and physiology of the subthalamic nucleus: A driving force of the basal ganglia, in: “The Basal Ganglia II- Structure and Function: Current Concepts, Advances in Behavioral Biology,” M.B. Carpenter, A. Jayaraman, eds., Plenum Press, New York, pp. 357–373.

    Google Scholar 

  • Kitai, ST., Kita, H., 1987b, Dual striatonigral inhibitory actions, Proc. International Conference Neural Mechanisms of Disorders of Movement, p. 21.

    Google Scholar 

  • Mitchell, S.J., Richardson, R.T., Baker, F.H., and DeLong, M.R., 1987, The primate globus pallidus:neuronal activity related to direction of movement, Exp. Brain Res. 68:491–505.

    PubMed  CAS  Google Scholar 

  • Moriizumi, T., Nakamura, Y., Okoyama, S., and Kitao, Y., 1987, Synaptic organization of the catentopeduncular nucleus with special reference to the relationship between the afferents and entopedunculo-thalamic projection neurons:An electron microscope study by a combined degeneration and horseradish peroxidase tracing technique, Neuroscience 20:797–816.

    Article  PubMed  CAS  Google Scholar 

  • Okoyama, S., Nakamura, Y., Moriizumi, T., and Kitao, Y., 1987, Electron microscopic analysis of the organization of the globus pallidus in the cat, J. Comp. Neurol. 265:323–331.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., 1990, Extrinsic connections of the basal ganglia, TINS 13:254–258.

    PubMed  CAS  Google Scholar 

  • Parent, A., Smith, Y., Filion, M., and Dumas, J., 1989, Distinct afferents to internal and external pallidal segments in the squirrel monkey, Neurosci. Lett. 96:140–144.

    Article  PubMed  CAS  Google Scholar 

  • Park, M.R., Falls, W.M., and Kitai, ST., 1982, An intracellular HRP study of the rat globus pallidus. I.Responses and light microscopic analysis, J. Comp. Neurol. 211:284–294.

    Article  PubMed  CAS  Google Scholar 

  • Robledo, P., and Féger, J., 1990, Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and pallidal complex:electrophysiological data, Brain Res. 518:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., and Bolam, J.P., 1990, The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat, J. Comp. Neurol. 296:47–64.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., and Bolam, J.P., 1991, Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat:a double anterograde labelling study, Neuroscience 44:45–73.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., Parent, A., and Dumas, J., 1988, Organization of efferent connections of the two pallidal segments in primate as revealed by PHA-L anterograde tracing method, Soc. for Neurosci. 14:719.

    Google Scholar 

  • Smith, Y., Wichmann, T., Delong, M.R., 1992, Synaptic innervation of the globus pallidus by the subthalamic nucleus in monkey, Proceedings of the IVth International Basal Ganglia Society meeting, p. 73.

    Google Scholar 

  • Somogyi, P., and Hodgson, A.J., 1985, Antisera to g-aminobutyric acid. III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex, J. Histochem. Cytochem. 33:249–257.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Hodgson, A.J., Chubb, I.W., Penke, B., and Erdei, A., 1985, Antisera to g-aminobutyric acid.II. Immunocytochemical application to the central nervous system, J. Histochem. Cytochem.33:240–248.

    Article  PubMed  CAS  Google Scholar 

  • Staines, W.A., 1988, PHA-L studies of the efferent connections of the rat globus pallidus, Soc Neurosci. Abs. 16:427.

    Google Scholar 

  • Tremblay, L., and Filion, M., 1989, Responses of pallidal neurons to striatal stimulation in intact waking monkeys, Brain Res. 498:1–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Plenum Press, New York

About this chapter

Cite this chapter

Smith, Y., Wichmann, T., Delong, M.R. (1994). The External Pallidum and the Subthalamic Nucleus Send Convergent Synaptic Inputs onto Single Neurones in the Internal Pallidal Segment in Monkey:Anatomical Organization and Functional Significance. In: Percheron, G., McKenzie, J.S., Féger, J. (eds) The Basal Ganglia IV. Advances in Behavioral Biology, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0485-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0485-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7591-6

  • Online ISBN: 978-1-4613-0485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics