Skip to main content

How Do Protein L18 and 5S RNA Interact?

  • Chapter

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

The complex of 5S RNA and proteins L18 and L25 from Escherichia coli has proved useful for studying both the chemistry of protein-RNA interactions and for examining cooperative assembly effects within ribosomes (reviewed by Garrett et al. 1981, 1984). It has the following advantages over most other protein-RNA complexes for such seminal studies: Both RNA and proteins are available in large quantities; the RNA is relatively small and homogeneous; the RNA secondary structure has been determined both experimentally and by comparing sequences to detect coordinated base changes; and the proteins are small and of known sequence. The current disadvantage is that insufficient protein sequences are available for localizing conserved amino acids or peptide sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bear, D.G., Schleich, T., Noller, H.F., Garrett, R.A. (1977). Alteration of 5S RNA conformation by proteins L18 and L25. Nucl. Acids Res. 4: 2511–2526.

    Article  CAS  Google Scholar 

  • Brosius, J, Ullrich, A., Raker, M.A., Gray, A, Dull, T.J., Gutell, R.R., Noller, H.F. (1981). Construction and fine mapping of recombinant plasmids containing the rrn B ribosomal RNA operon of E. coli. Plasmid 6: 112–118.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A., Mathiesen, M., Peattie, D., Garrett, R.A. (1985). Alternative conformers of 5S RNA and their biological relevance. Biochemistry 24: 2284–2291.

    Article  PubMed  CAS  Google Scholar 

  • Christiansen, J., Douthwaite, S.R., Christensen, A., Garrett, R.A. (1985). Does unpaired adenosine-66 from helix II of E. coli 5S RNA bind to protein L18. EMBO J. 4: 1019–1024.

    PubMed  CAS  Google Scholar 

  • Delihas, N., Andersen, J. (1982). Generalized structures of the 5S rRNAs. Nucl. Acids Res. 10: 7323–7344.

    Article  PubMed  CAS  Google Scholar 

  • De Wachter, R., Chen, M.-W., Vandenberghe, A. (1982). Conservation of secondary structure in 5S RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favourable. Biochimie 5: 311–329.

    Article  Google Scholar 

  • Douthwaite, S.R., Christensen, A., Garrett, R.A. (1982). Binding sites of ribosomal proteins on prokaryotic 5S RNAs: a study with ribonucleases. Biochemistry 21: 2313–2320.

    Article  PubMed  CAS  Google Scholar 

  • Douthwaite, S.R., Garrett, R.A. (1981). Secondary structure of prokaryotic 5S RNAs: a study with ribonucleases. Biochemistry 20: 7301–7307.

    Article  PubMed  CAS  Google Scholar 

  • Douthwaite, S.R., Garrett, R.A., Wagner, R., Feunteun, J. (1979). A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25. Nucl. Acids Res. 6: 2453–2470.

    Article  PubMed  CAS  Google Scholar 

  • Erdmann, V.A., Wolters, J., Huysmanns, E., Vandenberghe, A., De Wachter, R. (1985). Collection of published 5S and 5.8S RNA sequences. Nucl. Acids Res. 12: 133–166.

    Google Scholar 

  • Evstafieva, A.G., Shatsky, I.N., Bogdanov, A.A., Vasiliev, V.D. (1985). Topography of RNA in the ribosome: location of the 5S RNA residues A39 and U40 on the central protuberance of the 50S subunit. FEBS Lett. 185: 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Fanning, T.G., Traut, R.R. (1981). Topography of the E. coli 5S RNA-protein complex as determined by crosslinking with dimethyl superimidate and dimethyl- 3,3′-dithiobispropionimidate. Nucl. Acids Res. 9: 993–1004.

    Article  PubMed  CAS  Google Scholar 

  • Fersht, A.R., Shi, J.P., Knill-Jones, J., Lowe, D.M., Wilkinson, A.J., Blow, D.M., Brick, P., Carter, P., Waye, M.M.Y., Winter, G. (1985). Hydrogen bonding and biological specifity analysed by protein engineering. Nature 314: 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Feunteun, J., Monier, R., Garrett, R.A., Le Bret, M., Le Pecq, J.B. (1975). Effect of 50S subunit proteins L5, L18, and L25 on the fluorescence of 5S RNA-bound ethidium bromide. J. Mol. Biol. 93: 535–541.

    Article  CAS  Google Scholar 

  • Fox, G.E., Woese, C.R. (1975). 5S RNA secondary structure. Nature 256: 505–507.

    Google Scholar 

  • Garrett, R.A., Douthwaite, S.R., Noller, H.F. (1981). Structure and role of 5S RNA-protein complexes in protein biosynthesis. Trends Biochem. Sci. 5: 137–139.

    Article  Google Scholar 

  • Garrett, R.A., Noller, H.F. (1979). Structures of complexes of 5S RNA with proteins L5, L18 and L25 from E. coli: identification of kethoxal-reactive sites on the 5S RNA. J. Mol. Biol. 132: 637–648.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, R.A., Vester, B., Leffers, H., Sorensen, P.M., Kjems, J., Olesen, S.O., Christensen, A., Christiansen, J., Douthwaite, S.R. (1984). Mechanisms of protein-RNA recognition and assembly in ribosomes. Alfred Benzon Symp. No. 19, ed. Clark, B.F.C., Petersen, H.U. Munksgaard Press, Copenhagen, pp. 331–352.

    Google Scholar 

  • Gillam, S., Smith, M. (1979). Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers. 1. Optimum conditions and minimum oligodeoxyribonucleotide length. Gene 8: 81–97.

    Article  PubMed  CAS  Google Scholar 

  • Göringer, H.U., Szymkowiak, C., Wagner, R. (1984a). E. coli 5S RNA A and B conformers. Characterization by enzymatic and chemical methods. Eur. J. Biochem. 144: 25–34.

    Article  PubMed  Google Scholar 

  • Göringer, H.U., Wagner, R., Jacob, W.F., Dahlberg, A.E., Zwieb, C. (1984b). Oligonucleotide directed mutagenesis of E. coli 5S RNA: construction of mutant and structural analysis. Nucl. Acids Res. 12: 6935–6950.

    Article  PubMed  Google Scholar 

  • Hancock, J., Wagner, R. (1982). A structural model of 5S RNA from E. coli based on intramolecular crosslinking evidence. Nucl. Acids Res. 10: 1257–1269.

    Article  PubMed  CAS  Google Scholar 

  • Huber, P.W., Wool, I.G. (1984). Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease a-sarcin to determine the binding sites for E. coli proteins L5, L18 and L25 on 5S rRNA. Proc. Natl. Acad. Sci. USA 81: 322–326.

    Article  PubMed  CAS  Google Scholar 

  • Jinks-Robertson, S., Gourse, R.L., Nomura, M. (1983). Expression of rRNA and tRNA genes in E. coli: evidence for feedback regulation by products of rRNA operons. Cell 33: 856–876.

    Article  Google Scholar 

  • Jordan, B.R., Forget, B.G., Monier, R. (1971). A low molecular weight RNA synthesized by E. coli in the presence of chloramphenicol I: characterization and relation to normally synthesized 5S RNA. J. Mol. Biol. 55: 407–421.

    Article  PubMed  CAS  Google Scholar 

  • Kime, M.J., Moore, P.B. (1983). Nuclear Overhauser experiments at 500 MHz on the downfield proton spectrum of a ribonuclease resistant fragment of 5S RNA. Biochemistry 22: 2615–2622.

    Article  PubMed  CAS  Google Scholar 

  • Kjems, J., Olesen, S.O., Garrett, R.A. (1985). Comparison of eubacterial and eukaryotic 5S RNA structures: a chemical modification study. Biochemistry 24: 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, B., Kramer, W., Fritz, H.J. (1984). Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch repair system of E. coli. Cell 38: 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Leontis, N.B., Moore, P.B. (1984). A small angle X-ray scattering study of a fragment derived from E. coli 5S RNA. Nucl. Acids Res. 12: 2193–2203.

    Article  PubMed  CAS  Google Scholar 

  • Matheson, A.T., Nazar, R.N., Willick, G.E., Yaguchi, M. (1980). The evolution of the 5S RNA-protein complex. In: Genetics and evolution of RNA polymerase, tRNA and ribosomes, ed. Osawa, S. et al., University of Tokyo Press, pp. 625–637.

    Google Scholar 

  • Nazar, R.N., Wildeman, A.G. (1983). Three helical domains form a protein binding site in the 5S RNA-protein complex from eukaryotic ribosomes. Nucl. Acids Res. 11: 3155–3168.

    Article  PubMed  CAS  Google Scholar 

  • Newberry, V., Brosius, J., Garrett, R.A. (1978). Fragment of protein L18 from the E. coli ribosome that contains the 5S RNA binding site. Nucl. Acids Res. 5: 1753–1766.

    Article  PubMed  CAS  Google Scholar 

  • Newberry, V., Garrett, R.A. (1980). The role of the basic N-terminal region of protein L18 in 5S RNA-23S RNA complex formation. Nucl. Acids Res. 8: 4131–4142.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F., Garrett, R.A. (1979). Structure of 5S RNA from E. coli: identification of kethoxalreactive sites in the A and B conformations. J. Mol. Biol. 132: 621–636.

    Article  PubMed  CAS  Google Scholar 

  • Norris, K., Norris, F., Christiansen, L., Fiil, N. (1983). Efficient site mutagenesis by simultaneous use of two primers. Nucl. Acids Res. 11: 5103–5112.

    Article  PubMed  CAS  Google Scholar 

  • Osterberg, R., Garrett, R.A. (1977). Small-angle X-ray titration study on the complex formation between 5S RNA and the LI 8 protein of the E. coli 50S particle. Eur. J. Biochem. 79: 67–72.

    Article  Google Scholar 

  • Pace, B., Matthews, E.A., Johnson, K.D., Cantor, C.R., Pace, N.R. (1982). Conserved 5S rRNA complement to tRNA is not required for protein synthesis. Proc. Natl. Acad. Sci. USA 79: 36–40.

    Article  PubMed  CAS  Google Scholar 

  • Peattie, D.A. (1979). Direct chemical method for sequencing RNA. Proc. Natl. Acad. Sci. USA 76: 1760–1764.

    Article  PubMed  CAS  Google Scholar 

  • Peattie, D.A., Douthwaite, S.R., Garrett, R.A., Noller, H.F. (1981). A “bulged” double helix in a RNA-protein contact site. Proc. Natl. Acad. Sci. USA 78: 7331–7335.

    Article  PubMed  CAS  Google Scholar 

  • Prince, J.B., Gutell, R.R., Garrett, R.A. (1983). A consensus model of the E. coli ribosome. Trends Biochem. Sci. 8: 359–363.

    Article  CAS  Google Scholar 

  • Rabin, D., Kao, T., Crothers, D.M. (1983). A characterization of the low temperature structural transition of E. coli 5S RNA by partial enzymic digestion. J. Biol. Chem. 258: 10813–10816.

    PubMed  CAS  Google Scholar 

  • Spierer, P., Bogdanov, A.A., Zimmermann, R.A. (1978). Parameters for the interactions of proteins L5, LI 8 and L25 with 5S RNA from E. coli. Biochemistry 17: 5394–5398.

    Article  PubMed  CAS  Google Scholar 

  • Spierer, P., Zimmermann, R.A. (1978). Stoichiometry, cooperativity and stability of interactions between 5S RNA and proteins L5, LI 8 and L25 from the 50S subunit of E. coli. Biochemistry 17: 2474–2479.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, D.A., Pace, B., Marsh, T., Pace, N.R. (1984). The ribonucleoprotein substrate for a ribosomal RNA-processing nuclease. J. Biol. Chem. 259: 11448–11453.

    PubMed  CAS  Google Scholar 

  • Yaguchi, M, Rollin, C.F., Roy, C, Nazar, R.N. (1984). The 5S RNA binding protein from yeast (S. cerevisiae) ribosomes. An RNA binding sequence in the carboxy-terminal region. Eur. J. Biochem. 139: 451–457.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Christiansen, J., Garrett, R.A. (1986). How Do Protein L18 and 5S RNA Interact?. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics