Skip to main content

Part of the book series: Contemporary Biomedicine ((CB,volume 13))

Abstract

Soft tissue sarcomas constitute approx 1% of all malignancies and approx 2% of all cancer deaths (1). Soft tissues are embryologically derived from mesoderm and neuroectoderm and comprise >50% of total body weight. Histologically, soft tissue sarcomas resemble the cell types of the tissues of origin: fibrous tissue, adipose tissue, blood vessels, striated and smooth muscles, nerve, and other supporting tissues. Soft tissue sarcomas may arise anywhere in the body, but the majority occur in the large muscles of the extremities, chest wall, mediastinum, and retroperitoneum (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Storm HH: Cancers of the soft tissues. Cancer Survey: Trends Cancer Incidence Mortal 19/20:197–217, 1994.

    Google Scholar 

  2. Enzinger FM, Weiss SW: Soft Tissue Tumors, 3rd ed. St. Louis: Mosby, 1995.

    Google Scholar 

  3. Lattes R: Tumors of the soft tissue. In: Atlas of Tumor Pathology. Second series. Fascicle 1/Revised. Washington, DC: Armed Forces Institute of Pathology, 1983.

    Google Scholar 

  4. Weiss SW, Sobin L: WHO Classification of Soft Tissue Tumors. Berlin; Germany: Springer Verlag, 1994.

    Google Scholar 

  5. Barr FG, Chatten J, D’Cruz DM, Willson AE, Nauta LE, Nycum LM, Biegel J, Womer RB: Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA 273:553–557, 1995.

    PubMed  CAS  Google Scholar 

  6. Sandberg AA, Bridge JA: The Cytogenetics of Bone and Soft Tissue Tumors. Austin, TX: Landes, CRC, 1994.

    Google Scholar 

  7. Bridge JA: Cytogenetics and experimental models of sarcomas. In: Abeloff M (ed.), Current Opinion in Oncology. Philadelphia, PA: Current Science, pp. 333–339, 1995.

    Google Scholar 

  8. Fletcher JA, Kozakewich HP, Hoffer FA, Lage JM, Weidner N, Tepper R, Pinkus GS, Morton CC, Corson JM: Diagnostic relevance of clonal cytogenetic aberrations in malignant soft tissue tumors. N Engl J Med 324:436–143, 1991.

    PubMed  CAS  Google Scholar 

  9. Bridge JA: Cytogenetic and molecular cytogenetic techniques in orthopaedic surgery. Current concepts review. J Bone Joint Surg 75A:606–614, 1993.

    Google Scholar 

  10. Gray JW, Pinkel D, Brown JM: Fluorescence in situ hybridization in cancer and radiation biology. Radiat Res 137:275–289, 1994.

    PubMed  CAS  Google Scholar 

  11. Giovannini M, Biegel JA, Serra M, Wang JY, Wei YH, Nycum L, Emanuel BS, Evans GA: EWS-erg and EWS-Flil transcripts in Ewing’s sarcoma and primitive neuroectodermal tumors with variant translocations. J Clin Invest 94:489–496, 1994.

    PubMed  CAS  Google Scholar 

  12. Pedeutour F, Suijkerbuijk RF, Van Gaal S, Van de Klundert W, Van Haelst A, Collin F, Huffermann K, Turc-Carel C: Chromosome 12 origin in rings and giant markers in well-differentiated liposarcoma. Cancer Genet Cytogenet 66:133, 134, 1993.

    PubMed  CAS  Google Scholar 

  13. Dal Cin P, Kools P, Sciot R, De Wever T, Van Damme B, Van de Ven W, Van den Berghe H: Cytogenetic and fluorescent in situ hybridization investigation of ring chromosomes characterizing a specific pathologic subgroup of adipose tissue tumors. Cancer Genet Cytogenet 68:85–90, 1993.

    Google Scholar 

  14. Pedeutour F, Suijkerbuijk RF, Forus A, Van Gaal J, Van de Klundert W, Coindre JM, Nicolo G, Collin F. Van Haelst U, Huffermann K, Turc-Carel C: Complex composition and co-amplification of SAS and MDM2 in ring and giant marker chromosomes in well-differentiated liposarcoma. Genes Chromosome Cancer 10:85–94, 1994.

    CAS  Google Scholar 

  15. Nilbert M, Rydholm A, Willén H, Mitelman F, Mandahl N: MDM2 gene amplification correlates with ring chromosomes in soft tissue tumors. Genes Chromosome Cancer 9:261–265, 1994.

    CAS  Google Scholar 

  16. Pedeutour F, Coindre JM, Sozi G, Nicolo G, Leroux A, Toma S, Miozzo M, Bouchot C, Hecht F, Ayraud N, Turc-Carel C: Supernumerary ring chromosomes containing chromosome 17 sequences: a specific feature of dermatofibrosarcoma protuberans? Cancer Genet Cytogenet 76:1–9, 1994.

    PubMed  CAS  Google Scholar 

  17. Bridge JA, DeBoer J, Travis J, Johansson SL, Elmberger G, Noel SM, Neff JR: Simultaneous interphase cytogenetic analysis and fluorescence immunophenotyping of dedifferentiated chondrosarcoma: implications for histopathogenesis. Am J Pathol 144:215–220, 1994.

    PubMed  CAS  Google Scholar 

  18. Rabbitts TH, Forster A, Larson R, Nathan P: Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 4:175–180, 1993.

    PubMed  CAS  Google Scholar 

  19. Zucman J, Melot T, Desmaze C, Ghysdael J, Plougastel B, Peter M, Zucker JM, Triche TJ, Sheer D, Turc-Carel C, Ambros P, Combaret V, Lenoir G, Aurias A, Thomas G, Delattre O: Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J 12:4481–4487, 1993.

    PubMed  CAS  Google Scholar 

  20. Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, Ambros PF, Sheer D, Turc-Carel C, Triche TJ, Aurias A, Thomas G: The Ewing family of tumors: a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331:294–299, 1994.

    PubMed  CAS  Google Scholar 

  21. Ladanyi M, Gerald W: Fusion of the EWS and WT1 genes in the desmo-plastic small round cell tumor. Cancer Res 54:2837–2840, 1994.

    PubMed  CAS  Google Scholar 

  22. Zucman J, Delattre O, Desmaze C, Epstein A, Stenman G, Speleman F, Fletchers CDM, Aurias A, Thomas G: EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 4:341–345, 1993.

    PubMed  CAS  Google Scholar 

  23. Gill S, McManus AP, Crew AJ, Benjamin H, Sheer D, Busterson BA, Pinkerton CR, Patel K, Cooper CS, Shipley JM: Fusion of the EWS gene to a DNA segment from 9q22–31 in a human myxoid chondrosarcoma. Genes Chromosomes Cancer 12:307–310, 1995.

    PubMed  CAS  Google Scholar 

  24. Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, Gusterson BA, Cooper CS: Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 7:502–508, 1994.

    PubMed  CAS  Google Scholar 

  25. Michon J, Delattre O, Zucker JM, Peter M, Delonlay P, Luciani S, Mosseri V, Vielh P, Neuenschwander S, Thomas G: Prospective evaluation of Nmyc amplification and deletion of the short arm of chromosome 1 in neuroblastoma tumors: A single institution study. Adv Neuroblastoma Res 4:11–17, 1994.

    Google Scholar 

  26. Stock C, Ambros IM, Mann G, Gadner H, Amann G, Ambros PF: Detection of lp36 deletions in paraffin sections of neuroblastoma tissues. Genes Chromosomes Cancer 6: 1–9, 1993.

    PubMed  CAS  Google Scholar 

  27. Weith A, Martinsson T, Cziepluch C, Bruderlein S, Amier LC, Berthold F, Schwab M: Neuroblastoma consensus deletion maps to 1p36.1–2. Genes Chromosomes Cancer 1:159–166, 1989.

    PubMed  CAS  Google Scholar 

  28. Brodeur GM, Sekhon GS, Goldstein MN: Specific chromosomal aberration in human neuroblastoma. Am J Hum Genet 27:20A, 1975.

    Google Scholar 

  29. Brodeur GM, Sekhon GS, Goldstein MN: Chromosomal aberrations in human neuroblastomas. Cancer 40:2256–2263, 1977.

    PubMed  CAS  Google Scholar 

  30. Brodeur GM, Fong CT: Molecular biology and genetics of human neuroblastoma. Cancer Genet Cytogenet 41:153–174, 1989.

    PubMed  CAS  Google Scholar 

  31. Fong CT, Dracopoli MC, White PS, Merrill PT, Griffith RC, Housman DE, Brodeur GM: Loss of heterozygosity for chromosome 1p in human neuroblastomas: correlation with N-myc amplification. Proc Natl Acad Sci USA 86:3753–3757, 1989.

    PubMed  CAS  Google Scholar 

  32. Van Roy N, Laureys G, Verscharaegen-Spae MR, Benoit Y, Chan A, Versteeg R. Speleman F: High resolution mapping of DNA markers on chromosome 1 and the neuroblastoma consensus deletion region using fluorescence in situ hybridization (FISH). Cancer Genet Cytogenet 63:168, 1992.

    Google Scholar 

  33. Savelyeva L, Corvi R., Schwab M, Translocation involving 1p and 17q is a recurrent genetic alteration of human neuroblastoma cells. Am J Hum Genet 55:334–340, 1994.

    PubMed  CAS  Google Scholar 

  34. Caron H, van Sluis P, van Roy N, de Kraker J, Speleman F, Voute PA, Westerveld A, Slater R, Versteeg R: Recurrent 1;17 translocations in human neuroblastoma reveal nonhomologous mitotic recombination during the S/G2 phase as a novel mechanism for loss of heterozygosity. Am J Hum Genet 55:341–347, 1994.

    PubMed  CAS  Google Scholar 

  35. Takeda O, Homma C, Maseki N, Sakurai M, Kanda N, Schwab M, Nakamura Y, Kaneko Y: There may be two tumor suppressor genes on chromosome arm lp closely associated with biologically distinct subtypes of neuroblastoma. Genes Chromosomes Cancer 10:30–39, 1994.

    PubMed  CAS  Google Scholar 

  36. Schleiermacher G, Peter M, Michon J, Hugot JP, Vielh P, Zucker JM, Magdelenat H, Thomas G, Delattre O: Two distinct deleted regions on the short arm of chromosome 1 in neuroblastoma. Genes Chromosomes Cancer 10:275–281, 1994.

    PubMed  CAS  Google Scholar 

  37. Haber DA, Housman DE: The genetics of Wilms’ tumor. Adv Cancer Res 59:41–68, 1991.

    Google Scholar 

  38. Slater RM, Mannens MMAM: Cytogenetics and molecular genetics of Wilms’ tumor of childhood. Cancer Genet Cytogenet 61:111–121, 1992.

    PubMed  CAS  Google Scholar 

  39. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121–1124, 1984.

    PubMed  CAS  Google Scholar 

  40. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D: Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastoma. N Engl J Med 313:1111–1116, 1985.

    PubMed  CAS  Google Scholar 

  41. Cohn SL, Look AT, Joshi W, Holbrook T, Salwen H, Chagnovich D, Chesler L, Rowe ST, Valentine MB, Komuro H, Castelberry RP, Bowman LC, Rao PV, Seeger RC, Brodeur GM: Lack of correlation of N-myc gene amplification with prognosis in localized neuroblastoma: a pediatric oncology group study. Cancer Res 55:721–726, 1995.

    PubMed  CAS  Google Scholar 

  42. Lo R. Perlman E, Hawkins AL, Hayashi R, Wechsler DS, Look AT, Griffin CA: Cytogenetic abnormalities in two cases of neuroblastoma. Cancer Genet Cytogenet 74:30–34, 1994.

    PubMed  CAS  Google Scholar 

  43. Bridge JA, Neff JR, Sandberg M: Cytogenetic analysis of dermatofibrosar-coma protuberans. Cancer Genet Cytogenet 49:199–202, 1990.

    PubMed  CAS  Google Scholar 

  44. Stenman G, Andersson H, Meis-Kindblom JM, Roijer E, Kindblom L: FISH analysis of supernumerary ring chromosome in dermatofibrosarcoma protuberants. Int J Oncol 6:81–86, 1995.

    PubMed  CAS  Google Scholar 

  45. Minoletti F, Miozo M, Pedeutour F, Sard L, Pilotti S, Azzarelli A, Turc-Carel C, Pierotti MA, Sozi G: Involvement of chromosomes 17 and 22 in dermatofibrosarcoma protuberans. FISH study of three new cases. Genes Chromosomes Cancer 13:62–65, 1995.

    PubMed  CAS  Google Scholar 

  46. Pedeutour F, Simon MP, Minoletti F, Sozzi G, Pierotti MA, Hecht F, Turc-Carel C: Ring chromosome 22 in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res 55:2400–2403, 1995.

    PubMed  CAS  Google Scholar 

  47. Naeem R, Lux M, Huang S-F, Naber SP, Corson JM, Fletcher JA: Ring chromosomes in dermatofibrosarcoma protuberans are composed of interspersed sequences from chromosomes 17 and 22. Am J Pathol 147:1553–1558, 1995.

    PubMed  CAS  Google Scholar 

  48. Craver RD, Corrêa H, Kao YS, Van Brunt T, Golladay ES: Aggressive giant cell fibroblastoma with a balanced 17;22 translocation. Cancer Genet Cytogenetic 80:20–22, 1995.

    PubMed  CAS  Google Scholar 

  49. Pedeutour F, Lacour JP, Perrin C, Huffermann K, Simon MP, Ayraud N, Turc-Carel C: Another case of t(17;22)(q22;q13) in an infantile dermatofibrosarcoma protuberans. Cancer Genet Cytogenet 89:175–176, 1996.

    PubMed  CAS  Google Scholar 

  50. Sinovic J, Bridge JA: Translocation (2;17) in recurrent dermatofibrosarcoma protuberans. Cancer Genet Cytogenet 75:156–157, 1994.

    PubMed  CAS  Google Scholar 

  51. Örndal C, Mandahl N, Rydholm A, Willén H. Brosjö O, Heim S, Mitelman F: Supernumerary ring chromosomes; in five bone and soft tissue tumors of low or borderline malignancy. Cancer Genet Cytogenet 60:170–175, 1992.

    PubMed  Google Scholar 

  52. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B: Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83, 1992.

    PubMed  CAS  Google Scholar 

  53. Sreekantaiah C, Leong SPL, Karakousis CP, McGee DL, Rappaport WD, Villar HV, Neal D, Fleming S, Wankel A, Herrington PN, Carmona R, Sandberg AA: Cytogenetic profile of 109 lipomas. Cancer Res 51: 422–433, 1991.

    PubMed  CAS  Google Scholar 

  54. Mandahl N, Höglund M, Mertens F, Rydholm A, Willén H, Brosjö O, Mitelman F: Cytogenetic aberrations in 188 benign and borderline adipose tissue tumors. Genes Chromosome Cancer 9:207–212, 1994.

    CAS  Google Scholar 

  55. Suijkerbuijk RF, Olde Weghuis DEM, Van Den Berg M, Pedeutour F, Forus A, Myklebost O, Glier C, Turc-Carel C, Geurts van Kessel A: Comparative genomic hybridization as a tool to define two distinct chromosome 12-derived amplification units in well-differentiated liposarcomas. Genes Chromosomes Cancer 9:292–295, 1994.

    PubMed  CAS  Google Scholar 

  56. Forus A, Florenes VA, Moelandsmo GM, Fodstad O, Myklebost O: The protooncogene CHOP/GADD153 involved in growth arrest and DNA damage response is amplified in a subset of human sarcomas. Cancer Genet Cytogenet 78:165–171, 1994.

    PubMed  CAS  Google Scholar 

  57. Aurias A, Rimbaut C, Buffe D, Dubousset J, Mazabraud A: Chromosomal translocations in Ewing’s sarcoma. N Engl J Med 309:496–497, 1983.

    Google Scholar 

  58. Turc-Carel C, Philip I, Berger MP, Philip T, Lenoir GM: Translocation (11;22)(q24;q12) in Ewing sarcoma cell lines. N Engl J Med 309: 497–498, 1983.

    Google Scholar 

  59. Whang Peng J, Triche TJ, Knutsen T, Miser J, Dopublass EC, Israel MA: Chromosome translocations in peripheral neuroepithelioma. N Engl J Med 311:584–585, 1984.

    PubMed  CAS  Google Scholar 

  60. Stephenson CF, Bridge JA, Sandberg AA: Cytogenetic and pathologic aspects of Ewing’s sarcoma and neuroectodermal tumors. Hum Pathol 23:1270–1277, 1992.

    PubMed  CAS  Google Scholar 

  61. Sorenson PHB, Shimada H, Liu XF, Lim JF, Thomas G, Triche TJ: Biphenotypic sarcomas with myogenic and neural differentiation express the Ewing’s sarcoma EWS/FLI1 fusion gene. Cancer Res 55:1385–1392, 1995.

    Google Scholar 

  62. Turc-Carel C, Aurias A, Mugneret F: Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases and remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet 32:229–238, 1988.

    PubMed  CAS  Google Scholar 

  63. Ben-David Y, Giddens EB, Letwin K, Bernstein A: Genes Dev 5: 908–918, 1991.

    PubMed  CAS  Google Scholar 

  64. Nye JA, Petersen JM, Gunther CV, Jonsen MD, Graves BJ: Interaction of murine ETS-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif. Genes Dev 67:975–990, 1992.

    Google Scholar 

  65. Crozat A, Aman P, Mandahl N, Ron D: Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nat 363:640–644, 1993.

    CAS  Google Scholar 

  66. Rabbitts TH, Forster A, Larson R. Nathan P: Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 4:175–180, 1993.

    PubMed  CAS  Google Scholar 

  67. Lessnick SL, Braun BS, Denny CT, Mays WA: Multiple domains mediate transformation by the Ewing’s sarcoma EWS/FLI-1 fusion gene. Oncogene 10:423–431, 1995.

    PubMed  CAS  Google Scholar 

  68. Bailly RA, Bosselux R, Zucman J, Cormier F, Delattre O, Roussel M, Thomas G, Ghysdael J: DNA-binding and transciptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 14:3230–3241, 1994.

    PubMed  CAS  Google Scholar 

  69. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Houbert I, de Jong P, Roulear G, Aurias A, Thomas G: Gene fusion with an ETS-binding domain caused by chromosome translocation in human tumours. Nature 359:162–165, 1992.

    PubMed  CAS  Google Scholar 

  70. May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, Zucman J, Thomas G, Denny CT: Ewing sarcoma 11;22 translocation produces a chimaeric transcription factor that requires the DNA-binding domain encoded by FLI-1 for transformation. Proc Natl Acad Sci USA 90:5752–5756, 1993.

    PubMed  CAS  Google Scholar 

  71. Zoubek A, Pfleiderer C, Salzer-Kuntschik M, Amann G, Windhager R, Fink FM, Koscielniak E, Delattre O, Strehl S, Ambros PF, Gadner H, Kovar H: Variability of EWS chimaeric transcripts in Ewing tumours: a comparison of clinical and molecular data. Br J Cancer 70:908–913, 1994.

    PubMed  CAS  Google Scholar 

  72. Kretschmar CS: Ewing’s sarcoma and the “peanut” tumors. N Engl J Med 331:325–327, 1994.

    PubMed  CAS  Google Scholar 

  73. Pellin A, Boix J, Blesa JR, Noguera R, Carda C, Llombart-Bosch A: EWS/FLI-1 rearrangement in small round cell sarcomas of bone and soft tissue detected by reverse transcriptase polymerase chain reaction amplification. Eur J Cancer 30:827–831, 1994.

    Google Scholar 

  74. Downing JR, Khandekar A, Shurtleff SA, Head DR, Parham DM, Webber BL, Pappo AS, Hulshof MG, Conn WP, Shapiro DN: Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing’s sarcoma. Am J Pathol 146:626–634, 1995.

    PubMed  CAS  Google Scholar 

  75. Desmaze C, Zucman J, Delattre O, Melot T, Thomas G, Aurias A: Interphase molecular cytogenetics of Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) with flanking and overlapping cosmid probes. Cancer Genet Cytogenet 74:13–18, 1994.

    PubMed  CAS  Google Scholar 

  76. Chung EB, Enzinger FM: Malignant melanoma of soft parts. A reassessment of clear cell sarcoma. Am J Surg Pathol 7:405–413, 1983.

    PubMed  CAS  Google Scholar 

  77. Amr S, Farah GR, Muhtaseb HH, Al-Hajj HA, Leven A: Clear cell sarcoma; Report of two cases with ultrastructural observation. Clin Oncol 10:59–65, 1984.

    PubMed  CAS  Google Scholar 

  78. Kindblom LG, Lodding P, Angervall A: Clear cell sarcoma of tendons and aponeuroses. An immunohistochemical and electron microscopic analysis indicating neural crest origin. Virchows Arch Pathol Anat 409:109–128, 1983.

    Google Scholar 

  79. Bridge JA, Borek DA, Neff JR, Huntrakoon M: Chromosomal abnormalities in clear cell sarcoma. Implications for histogenesis. Am J Clin Pathol 93:26–31, 1990.

    PubMed  CAS  Google Scholar 

  80. Travis JA, Bridge JA: Significance of both numerical and structural chromosomal abnormalities in clear cell sarcoma. Cancer Genet Cytogenet 64:104–106, 1992.

    PubMed  CAS  Google Scholar 

  81. Sandberg AA. The Chromosomes in Human Cancer and Leukemia, 2nd ed. New York: Elsevier Science, 1990.

    Google Scholar 

  82. Mugneret F, Lizard S, Aurias A, Turc-Carel C: Chromosomes in Ewing’s sarcoma. II. Nonrandom additional changes, trisomy 8 and der(16)t(1;16). Cancer Genet Cytogenet 32:239–245, 1988.

    PubMed  CAS  Google Scholar 

  83. Sreekantaiah C, Karakousis CP, Leong SPL, Sandberg AA: Trisomy 8 as a nonrandom secondary change in myxoid liposarcoma. Cancer Genet Cytogenet 51:195–205, 1991.

    PubMed  CAS  Google Scholar 

  84. Desmaze C, Zucman J, Delattre O, Melot T, Thomas G, Aurias A: Precise localization on chromosome 12 of the ATF-1 gene by fluorescence in situ hybridization. Hum Genet 93:207–208, 1994.

    PubMed  CAS  Google Scholar 

  85. Gerald WL, Miller HK, Battifora H, Miettinen M, Silva EG, Rosai J: Intraabdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am J Surg Pathol 15:499–513, 1991.

    PubMed  CAS  Google Scholar 

  86. Turc-Carel C, Lizard-Nacol S, Justrabo E, Favrot M, Philip T, Tabone E: Consistent chromosomal translocation in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet 19:361–362, 1986.

    PubMed  CAS  Google Scholar 

  87. Parham DM, Shapiro DN, Downing JR, Webber BL, Douglass EC: Solid alveolar rhabdomyosarcoma with the t(2;13): Report of two cases with diagnostic implications. Am J Surg Pathol 18:474–478, 1994.

    PubMed  CAS  Google Scholar 

  88. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ, Emanuel BS, Rovera G, Barr FG: Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230–235, 1993.

    PubMed  CAS  Google Scholar 

  89. Fredericks WJ, Galili N, Mukhopadhyay S, Rovera G, Bennicelli J, Barr FG, Rauscher FJ: The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 15:1522–1535, 1995.

    PubMed  CAS  Google Scholar 

  90. Davis RJ, D’Cruz DM, Lovell MA, Biegel JA, Barr FG: Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54:2869–2872, 1994.

    PubMed  CAS  Google Scholar 

  91. Biegel JA, Nyeum LM, Valentine V, Barr FG, Shapiro DN: Detection of the t(2;13)(q35;q14) and PAX3-FKHR fusion in alveolar rhabdomyosarcoma by fluorescence in situ hybridization. Genes Chromosome Cancer 12:186–192, 1995.

    CAS  Google Scholar 

  92. Gemmill RM, Mendez MJ, Dougherty CM, Paulien S, Liao M, Mitchell D, Jankowski SA, Trent JM, Berger C, Sandberg AA, Meltzer PS: Isolation of a yeast artificial chromosome clone that spans the (12;16) translocation breakpoint characteristic of myxoid liposarcoma. Cancer Genet Cytogenet 62:166–179, 1992.

    PubMed  CAS  Google Scholar 

  93. Eneroth M, Mandahl N, Heim S, Willen H, Rydholm A, Alberts KA, Mitelman F: Localization of the chromosomal breakpoints of the t(12;16) in liposarcoma to subbands 12q13.3 and 16p11.2. Cancer Genet Cytogenet 48:101–107, 1990.

    PubMed  CAS  Google Scholar 

  94. Mrózek K, Karakousis CP, Bloomfield CD: Chromosome 12 breakpoints are cytogenetically different in benign and malignant lipogenic tumors: localization of breakpoints in lipoma to 12q15 and in myxoid liposarcoma to 12ql3.3. Cancer Res 53:1670–1675, 1993.

    PubMed  Google Scholar 

  95. Schoenmakers EFPM, Kools PFJ, Mols R, Kazmierczak B, Bartnitzke S, Bullerdiek J, Dal Cin P, De Jong PJ, Van den Berghe H, Van de Ven WJM: Physical mapping of chromosome 12q breakpoints in lipoma, pleomorphic salivary gland adenoma, uterine leiomyoma, myxoid liposarcoma. Genomics 20:210–222, 1994.

    PubMed  CAS  Google Scholar 

  96. Ron D, Habener JF: CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 6:439–453, 1992.

    PubMed  CAS  Google Scholar 

  97. Bridge JA, Bridge RS, Borek DA, Shaffer B, Norris CW: Translocation t(X;18) in orofacial synovial sarcoma. Cancer 62:935–937, 1988.

    PubMed  CAS  Google Scholar 

  98. Roberts C, Seemayer TA, Bridge JA: Cancer Genet Cytogenet, in press.

    Google Scholar 

  99. Limon J, Dal Cin P, Sandberg AA: Translocations involving the X chromosome in solid tumors. Presentation of two sarcomas with t(X;18)(q13;p11). Cancer Genet Cytogenet 23:87–91, 1986.

    PubMed  CAS  Google Scholar 

  100. Turc-Carel C, Dal Cin P, Limon J, Li F, Sandberg AA: Translocation X;18 in synovial sarcoma. Cancer Genet Cytogenet 23:93, 1986.

    PubMed  CAS  Google Scholar 

  101. Shipley JM, Clark J, Crew AJ, Birdsall S, Rocques PJ, Bw S, Chelly J, Monaco AP, Abe S, Gusterson BA, Cooper CS: The t(X;18)(p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9:1447–1453, 1994.

    PubMed  CAS  Google Scholar 

  102. de Leeuw B, Suijkerbuijk RF, Olde Weghuis DO, Meloni AM, Stenman G, Kindblom LG, Balernans M, van den Berg E, Molenaar WM, Sandberg AA, Geurts van Kessel A: Distinct Xp11.2 breakpoint regions in synovial sarcoma revealed by metaphase and interphase FISH: relationship to histologic subtypes. Cancer Genet Cytogenet 75:89–94, 1994.

    Google Scholar 

  103. Fligman I, Lonardo F, Jhanwar SC, Gerald WL, Woodruff J, Ladanyi M: Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSXZ fusion transcript. Am J Pathol 147:1592–1599, 1995.

    PubMed  CAS  Google Scholar 

  104. Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AMI, Gusterson BA, Cooper CS: Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 7:502–508, 1994.

    PubMed  CAS  Google Scholar 

  105. Kretschmar CS: Ewing’s sarcoma and the “peanut” tumors. N Engl J Med 331:325–327, 1994.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this chapter

Cite this chapter

Bridge, J.A. (1997). Soft Tissue Sarcomas. In: Wolman, S.R., Sell, S. (eds) Human Cytogenetic Cancer Markers. Contemporary Biomedicine, vol 13. Humana Press. https://doi.org/10.1007/978-1-4612-3952-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3952-9_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8437-6

  • Online ISBN: 978-1-4612-3952-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics