Skip to main content

Studies of Human Fetal Pancreatic Islets in Vitro

  • Chapter
Fetal Islet Transplantation

Abstract

In 1911, Bensley (1) demonstrated that intravascular injection of a variety of dyes into the guinea pig would selectively stain pancreatic islets, thus identifying them so that they could be picked out by hand for study. In spite of very small yields of islets, it was an important beginning. A major breakthrough for islet isolation did not occur until half a century later when Moskalewski (2) utilized collagenase, a multienzyme complex, to separate intact islets from the chopped guinea pig pancreas. Kostianovsky and Lacy (3) modified this technique and substantially improved the yield of isolated islets. All currently used modifications are based on these initial methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bensley RR: Studies on the pancreas of the guinea pig. Am J Anat 1911; 12: 297–388.

    Article  Google Scholar 

  2. Moskalewski S: Isolation and culture of the islets of Langerhans of the guinea pig. Gen Comp Endocrinol 1965;5:324–353.

    Article  Google Scholar 

  3. Lacy E, Kostianovsky M: Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 1967;16:35–39.

    PubMed  CAS  Google Scholar 

  4. Brown J, Molnar IG, Clark W, et al: Control of experimental diabetes in rats by transplantation of fetal pancreas. Science 1974;184:1377–1379.

    Article  PubMed  CAS  Google Scholar 

  5. Brown J, Clark W, Molnar I, et al: Fetal pancreas transplantation for reversal of streptozotocin-induced diabetes in rats. Diabetes 1976;25:56–64.

    Article  PubMed  CAS  Google Scholar 

  6. McEvoy RC, Hegre OD: Syngeneic transplantation of fetal rat pancreas. II. Effect of insulin treatment on the growth and differentiation of pancreatic implants fifteen days after transplantation. Diabetes 1978;27:988–995.

    Article  PubMed  CAS  Google Scholar 

  7. Mandel TE, Hoffman L, Carter MW: Long-term isografts of cultured fetal mouse pancreatic islets. The oncogenic effects of streptozotocin and the prevention of diabetic renal complications. Am J Pathol 1981;104:227–236.

    PubMed  CAS  Google Scholar 

  8. Mandel TE, Koulmanda M: Effect of culture conditions on fetal mouse pancreas in vitro after transplantation in syngeneic and allogeneic recipients. Diabetes 1985;34:1082–1087.

    Article  PubMed  CAS  Google Scholar 

  9. Georgiou HM, Mandel TE: Fetal pancreatic islet allotransplantation in mouse tissue versus immunogenicity. Transplant Proc 1985;17:404–406.

    Google Scholar 

  10. Ashcroft SEH, Randle P, Basset JT: Isolation of human pancreatic islets capable of releasing insulin metabolizing glucose in vitro. Lancet 1971;1:188.

    Google Scholar 

  11. Sutherland DER, Matas AJ, Goetz FC: Transplantation of dispersed pancreatic islet tissue in Humans. Autografts and allografts. Diabetes 1980;29(suppl 1): 31–44.

    PubMed  Google Scholar 

  12. Formby B, Walker L, Peterson CM: Improved isolation yield of murine islets of Langerhans from a single donor can reverse experimental diabetes after isotransplantation. Diabetes Res 1985;2:217–219.

    PubMed  CAS  Google Scholar 

  13. Formby B, Walker L, Peterson CM: Effects of duration of cold storage and gestational age on the insulin secretory capacity of human fetal pancreatic islets. Diabetes Res 1987;4:113–116.

    PubMed  CAS  Google Scholar 

  14. Bonnevie-Nielsen V, Skovgaard L, Lernmark A: Beta-cell function relative to islet volume and hormone content in the isolated perfused mouse pancreas. Endocrinology 1983;112:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  15. Formby B, Schmid-Formby F, Grodsky GM: Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture. Diabetes 1984;33:229–234.

    Article  PubMed  CAS  Google Scholar 

  16. Gray DVR, McShane P, Grant A, et al: A method for isolation of islets of Langerhans from the human pancreas. Diabetes 1984;33:1055–1061.

    Article  PubMed  CAS  Google Scholar 

  17. Mandel TE, Georgiou HM: Insulin secretion by fetal pancreatic islets of Langerhans in prolonged organ culture. Diabetes 1983;32:915–920.

    Article  PubMed  CAS  Google Scholar 

  18. Formby B, Walker L, Peterson CM: Rapid selection of viable transplantable human fetal pancreatic islets by Trypan blue exclusion. Proc Soc Exp Biol Med 1986;182:245–247.

    PubMed  CAS  Google Scholar 

  19. Iffy L, Jakobovits A, Westlake W, et al: Early intrauterine development I. The rate of growth of Caucasian embryos and fetuses between the 6th and 20th weeks of gestation. Pediatrics 1975;56:173–186.

    PubMed  CAS  Google Scholar 

  20. Hansmann, M., Schumacher, H., Foebus, J., Voigt, U: Ultraschallbiometrie der fetalen ScheitelsteiBlänge in der ersten Schwangerschaftshälfte. Geburtshilfe Frauenheilkd 1979;39:656–666.

    PubMed  CAS  Google Scholar 

  21. Kaplan SL, Grumbach MM, Shepard TH: The ontogenesis of fetal hormones. I. Growth hormone and insulin. J Clin Invest 51:3080–3093.

    Google Scholar 

  22. Mayo KE, Vale W, Rivier J, et al: Expression-cloning and sequence of a cDNA encoding human growth hormone releasing factor. Nature 1983;306:86–88.

    Article  PubMed  CAS  Google Scholar 

  23. Formby B, Walker L: Human growth enhances insulin secretion from cultured human fetal pancreatic islets. Diabetes 1986;35(suppl 1):182A.

    Google Scholar 

  24. Formby B, Ullrich A, Coussens L, et al: Growth hormone regulation of insulin gene transcription in cultured human fetal pancreatic islets. Diabetes 1987;36(suppl 1):5A.

    Google Scholar 

  25. Milner RDG, Hill DJ: Fetal growth control: The role of insulin and related peptides. Clin Endocrinol 1984;21:415–433.

    Article  CAS  Google Scholar 

  26. Nielsen JH, Mandrup-Poulsen T, Nerup J: Direct effects of cyclosporine A on human pancreatic beta-cells. Diabetes 1986;35:1049–1052.

    Article  PubMed  CAS  Google Scholar 

  27. Formby B, Walker L, Peterson CM: 3H-Cyclosporine A uptake and amino acids stimulated secretion by human fetal pancreatic islets. An approach to successful xenogeneic transplantation. Diabetologia 1986;29:538A.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Formby, B., Walker, L., Peterson, C.M. (1988). Studies of Human Fetal Pancreatic Islets in Vitro. In: Peterson, C.M., Jovanovic-Peterson, L., Formby, B. (eds) Fetal Islet Transplantation. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3766-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3766-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8341-6

  • Online ISBN: 978-1-4612-3766-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics