Skip to main content

The SCS/ARS/CES Pesticide Properties Database for Environmental Decision-Making

  • Chapter

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 123))

Abstract

A principal goal of pesticide science is to be able to predict the environmental impact of a pesticide before it is released into the environment. To save expense and time, we would like to be able to make such a prediction for each pesticide with as few laboratory experiments on the pesticide as possible, and even fewer field experiments. Environmental processes, however, are enormously complex and sometimes (apparently) random. The sites of most interest—agricultural fields, forests, lakes, streams, etc.—are subtle living ecosystems which are incompletely understood and subject to great variability in space and time. The very diversity and intricacy which are indicators of the health of such ecosystems makes even the definition of what constitutes a significant impact on such systems a difficult task.

Approved for publication as Florida Agricultural Experiment Station Journal Series No. R-01529.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addala MSA, Hance RJ, Drennan DSH (1984) Effects of application method on the performance of some soil-applied herbicides. I. Glasshouse experiments. Weed Res 24:99–104.

    Article  Google Scholar 

  2. Aharonson N, Kafkafi U (1982) The persistence in soil and availability to plant roots of benzimidazole systemic fungicides. In: Horowitz M (ed) Behaviour of pesticides in soil. Proceedings of the Israel-France symposium, Bet Dagan, Israel, pp 86–92.

    Google Scholar 

  3. Allen R, Walker A (1987) The influence of soil properties on the rates of degradation of metamitron, metazachlor and metribuzin. Pestic Sci 18:95–111.

    Article  CAS  Google Scholar 

  4. Ambrosi D, Helling CS (1977) Leaching of oxadiazon and phosalone in soils. J Agric Food Chem 25:215–217.

    Article  CAS  Google Scholar 

  5. American Cyanamid Company (1987) Material Safety Data Sheet no. 9059–02. Wayne, NJ.

    Google Scholar 

  6. Baily GW, White JL (1964) Review of adsorption and desorption of organic pesticides by soil colloids, with implications concerning biological activity. J Agric Food Chem 12:324–332.

    Article  Google Scholar 

  7. Bailey GW, White JL (1965) Herbicides: a compilation of their chemical, physical and biological properties. Residue Rev 10:1–97.

    Google Scholar 

  8. Ballantine CG (1990) Personal Communication, Agriculutural Division Ciba-Geigy Corp., Greensboro NC.

    Google Scholar 

  9. Baude FJ, Harlan LP, Holt RF (1974) Fate of benomyl on field soil and turf. J Agric Food Chem 22:413–418.

    Article  PubMed  CAS  Google Scholar 

  10. Baughman GL, Lassiter RR (1978) Prediction of Environmental Pollutant Concentration. In: Cairns J, Dickson KL, Maki AW (eds) Estimating the hazard of chemical substances to aquatic life. American society for testing and materials, Philadelphia PA, pp. 35–54.

    Chapter  Google Scholar 

  11. Becker RL, Herzfeld D, Ostile KR, Stamm-Katovich EJ, (1989) Pesticides: surface runoff, leaching, and exposure concerns. U Minn Ext Serv Bull AG-BU-3911, St. Paul, MN, 32 pp.

    Google Scholar 

  12. Beguhn MA (1989) Personal Communication, ICI Agricultural Products, Wilmington, DE.

    Google Scholar 

  13. Beyer EM, Brown HM, Duffy MJ (1987) Sulfonylurea herbicide soil relations. Proc Brit Crop Prot Conf Weeds 2:531–540.

    Google Scholar 

  14. Boesten JJTI, Van der Pas LJT (1983) Test of some aspects of a model for the adsorption/desorption of herbicides in field soil. Aspects of Appl Biol 4:496–501.

    Google Scholar 

  15. Bouchard DC, Lavy TL (1985) Hexazinone adsorption-desorption studies with soil and organic adsorbents. J Environ Qual 14:181–186.

    Article  CAS  Google Scholar 

  16. Bouchard DC, Lavy TL, Marx DB (1982) Fate of metribuzin, metolachlor, and fluometuron in soil. Weed Sci 30:629–632.

    CAS  Google Scholar 

  17. Bowery TC (1964) Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives. Academic Press, New York, NY, 127 pp.

    Google Scholar 

  18. Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficient, water solubilities, bioconcentration factors and the parachor. J Agric Food Chem 29:1050–1059.

    Article  CAS  Google Scholar 

  19. Briggs GG, Rigitano RLO, Bromilow RH (1987) Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19:101–112.

    Article  CAS  Google Scholar 

  20. British Crop Protection Council (1977) Pesticide Manual, 5th Ed. British Crop Protection Council, Croydon England, pp.

    Google Scholar 

  21. British Crop Protection Council (1986) Pesticide Manual, 7th Ed. British Crop Protection Council, Croydon England, 695 pp.

    Google Scholar 

  22. British Crop Protection Council (1991) Pesticide Manual, 9th Ed. British Crop Protection Council, Croydon England, V. pp.

    Google Scholar 

  23. Brown NPH, Furmidge CGL, Grayson BT (1972) Hydrolysis of the triazine herbicide, cyanazine. Pestic Sci 3:669–678.

    Article  CAS  Google Scholar 

  24. Burkhard N, Guth JA (1981) Rate of volatilisation of pesticides from soil surfaces; comparison of calculated results with those determined in a laboratory model system. Pestic Sci 12:37–44.

    Article  CAS  Google Scholar 

  25. Calras P, Meloni M, Pirisi FM (1987) Pesticide fate from vine to wine. Rev Environ Contam Toxicol 99:83–117.

    Google Scholar 

  26. Carlson WC, Lignowski EM, Hopen HJ (1975) Uptake, translocation, and adsorption of pronamide. Weed Sci 23:148–154.

    Google Scholar 

  27. Castro CE (1990) Personal communication, University of California, Riverside CA.

    Google Scholar 

  28. Cessna AJ, Grover R (1978) Spectrophotometric determination of dissociation constants of selected acidic herbicides. J Agric Food Chem 26:189–192.

    Article  Google Scholar 

  29. Chapman RA, Harris CR (1981) Persistence of four pyrethroid insecticides in a mineral and an organic soil. J Environ Sci Hlth (Part B) Pestic Food Contam Agric Wastes 16:605–615.

    CAS  Google Scholar 

  30. Chemical and Pharmaceutical Press (1991) Crop Protection Chemicals Reference, 7th Ed. 2101 pp. John Wiley and Sons, New York, NY.

    Google Scholar 

  31. Cheng HH (1991) (ed) Pesticides in the soil environment: processes, impacts, and modeling. Soil Sci Soc Am Book Ser No. 2, Soil Science Society of America, Madison, WI. 530 pp.

    Google Scholar 

  32. Chiou CT, Freed VH, Schmedding DW, Kohnert RL (1977) Partition coefficient and bioaccumulation of selected organic chemicals. Environ Sci Technol 11:475–478.

    Article  CAS  Google Scholar 

  33. Cohen S (1984) Personal Communication, US Environmental Protection Agency, Office of Pesticide Progerams, Environmental Fate and Effects Division, Washington DC.

    Google Scholar 

  34. 34.Dao TH, Lavy TL, Dragun J (1983) Rationale for the solvent selection for soil extraction of pesticide residues. Residue Rev 87:91–104.

    CAS  Google Scholar 

  35. Davies FM, Leonard RA, Knisel WG (1990) GLEAMS user manual version 1.8.55. USDA-ARS Southeast Watershed Research Laboratory, Tifton, GA, 39 p.

    Google Scholar 

  36. Day EW Jr (1989) Personal Communication, Lilly Research Laboratories, Greenfield, IN.

    Google Scholar 

  37. DeCoursey DG (1990) (ed) Proceedings of the international symposium on water quality modeling of agricultural non-point sources. USDA-ARS Publ ARS-81, 881 pp.

    Google Scholar 

  38. Dragun J (1988) Adsorption and mobility of organic chemicals. In: Dragun J (ed) The soil chemistry of hazardous materials. Hazardous Materials Control Research Institute, Silver Spring, MD, pp 221–262.

    Google Scholar 

  39. Edwards CA (1977) Nature and origins of pollution of aquatic systems by pesticides. In: Khan MAQ (ed) Pesticides in aquatic environments. Plenum Press, New York, pp 11–38.

    Google Scholar 

  40. Felsot A, Dahm PA (1979) Sorption of organophosphorus and carbamate insecticides by Soil. J Agric Food Chem 27:557–563.

    Article  CAS  Google Scholar 

  41. Ferraro CF (1990) Personal communication, FMC Corporation, Chemical Group, Princeton, NJ.

    Google Scholar 

  42. Ferreira GAL, Seiber JN (1981) Volatilization and exudation losses of three N-methylcarbamate insecticides applied systemically to rice. J Agric Food Chem 29:93–99.

    Article  PubMed  CAS  Google Scholar 

  43. Foster RK, McKercher RB (1973) Laboratory incubation studies of chlorophenoxyacetic acids in chernozemic soils. Soil Biol Biochem 5:333–337.

    Article  CAS  Google Scholar 

  44. Fuller M (1988) Personal Communication, Florida Department of Agriculture and Consumer Services, Tallahassee Florida, Original data from US Fish and Wildlife Service.

    Google Scholar 

  45. Geissbuhler H, Haselbach C, Aebi H (1963) The fate of N’-(4-chlorophenoxy)-phenyl-NN-dimethylurea (C-1983) in soils and plants. Weed Res 3:140–153.

    Article  Google Scholar 

  46. Gerstl Z (1990) Evaluating the groundwater pollution hazard of toxic chemicals by molecular connectivity. Final report, Project 2530-2-87, Institute of Soils and Water, the Volcani Center, Bet Dagan, Israel, 196 pp.

    Google Scholar 

  47. Gerstl Z, Helling CS (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides by soils. J Environ Sci Hlth (Part B) Pestic Food Contam Agric Wastes 22:55–69.

    Google Scholar 

  48. Gerstl Z, Mingelgrin U, Yaron B (1977) Behavior of Vapam and Methylisothiocyanate in Soils. Soil Sci Soc Am J. 41:545–548.

    Article  CAS  Google Scholar 

  49. Gerstl Z, Yaron B. (1983) Behavior of bromacil and napropamide in soils: I. Adsorption and degradation. Soil Sci Soc Am J 47:474–478.

    Article  CAS  Google Scholar 

  50. Getzin LW (1985) Factors influencing persistence and the effectiveness of chlorpyrifos in soil. J Econ Entomol 78:412–418.

    CAS  Google Scholar 

  51. Gile JD, Gillette JW (1981) Transport and fate of organophosphate insecticides in a laboratory model ecosystem. J Agric Food Chem 29:616–621.

    Article  PubMed  CAS  Google Scholar 

  52. Goetz AJ, Lavy TL, Gbar EE (1990) Degradation and field persistence of Imazethapyr. Weed Sci 38:421–428.

    CAS  Google Scholar 

  53. Görlitz G (1989) Personal Communication, Hoechst AG, Germany.

    Google Scholar 

  54. Goss DW, Wauchope RD (1990) The SCS/ARS/CES pesticide properties database: II. Combining it with soils property data for first-tier comparative water pollution risk analysis. Proc 3rd Natl Conf Pesticides in the Next Decade: the Challenges Ahead. Water Resources Res Inst, Blacksburg, VA (in press).

    Google Scholar 

  55. Grayson BT, Klier DA (1990) Phloem mobility of xenobiotics. IV. Modeling of pesticide movement in plants. Pesic Sci 30:67–79.

    Article  CAS  Google Scholar 

  56. Grayson BT, Williams KS, Freehauf PA, Pease RR, Ziesel WT, Sereno RL, Reinsfelder RE (1987) The physical and chemical properties of the chemical cinmethylin. Pestic Sci 21:143–153.

    Article  CAS  Google Scholar 

  57. Green RE, Karickhoff SW (1990) Estimating pesticide sorption coefficients for soils and sidiments. In: DeCoursey DG (ed) Small watershed model (SWAM) for water, sediment and chemical movement: supporting documentation. USDA-ARS Publ ARS-80, USDA-ARS, Washington, DC, pp 1–18.

    Google Scholar 

  58. Green RE, Karickhoff SW (1990) Sorption estimates for modeling. In: Cheng HH (ed) Pesticides in the soil environment: processes, impacts, and mideling. Soil Science Society of America, Madison, WI, pp 79–101.

    Google Scholar 

  59. Guckel W, Synnatsche G, Rittig R (1973) A method for determining the volatility of active ingredients used in plant protection. Pestic Sci 4:137–147.

    Article  Google Scholar 

  60. Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environ Toxicol Chem 8:339–357.

    Article  CAS  Google Scholar 

  61. Gustafson DI (1989) Personal Communication, Monsanto Company, St. Louis, MO.

    Google Scholar 

  62. Gustafson DI (1990) Nonlinear pesticide dissipation in soil: a simple consequence of spatial variability. Environ Sci Technol 24:1032–1038.

    Article  CAS  Google Scholar 

  63. Hamaker JW (1975) The interpretation of soil leaching experiments. In: Haque R, Freed VH (eds) Environmental dynamics of pesticides. Plenum Press, New York, NY, pp 115–133.

    Google Scholar 

  64. Hamaker JW, Goring CAI, Youngson CR (1966) Sorption and leaching of 4-amino-3, 5, 6-trichloropicolinic acid in soils. Adv Chem Ser 60:23–37.

    Article  Google Scholar 

  65. Hamaker JW, Thompson JM (1972) Adsorption. In: Goring CAI, Hamaker JW (eds) Origanic chemicals in the soil environment, vol 1. Marcel Dekker Publ, New York, NY. pp 51–143.

    Google Scholar 

  66. Hamaker JW, Youngston CR, Goring CAI (1967) Prediction of the persistence and activity of tordon herbicide in soils under field conditions. Down To Earth 23:30–36.

    Google Scholar 

  67. Hance RJ (1965) The adsorption of urea and some of its derivatives by a variety of soils. Weed Res 5:98–107.

    Article  CAS  Google Scholar 

  68. Haque R, Kearney PC, Freed VH (1977) Dynamics of pesticides in aquatic sediments. In: Khan MAQ (ed) Pesticides in aquatic sediments. Plenum Press, New York NY, pp 39–52.

    Google Scholar 

  69. Hartley GS, Graham-Bryce IJ (1980) Physical Principles of Pesticide Behavior Vol. 2. Academic Press, New York NY. pp 887–925.

    Google Scholar 

  70. Harvey JJr (1983) A simple method of evaluating soil breakdown of l4C-pesticides under field conditions. Residue Rev 85:149–158.

    Google Scholar 

  71. Hay JV (1990) Chemistry of sulfonylurea herbicides. Pestic Sci 29:247–261.

    Article  CAS  Google Scholar 

  72. Heller SR (1990) Personal Communication, US Department of Agriculture Systems Research Laboratory, Beltsville, MD.

    Google Scholar 

  73. Heller SR, Herner AE (1990) ARS Pesticide Properties Data Base. USDA-ARS Systems Research Laborarory, Beltsville, MD.

    Google Scholar 

  74. Helling CS (1971) Pesticide mobility in soils I. Parameters from thin-layer chromatography. Soil Sci Soc Am Proc 35:732–737.

    Article  CAS  Google Scholar 

  75. Helling CS (1971) Pesticide mobility in soils II. Applications of soil thin layer chromatography. Soil Sci Soc Am Proc 35:737–743.

    Article  CAS  Google Scholar 

  76. Helling CS (1971) Pesticide mobility in soils III. Influence of soil properties. Soil Sci Soc Am Proc 35:743–748.

    Article  CAS  Google Scholar 

  77. Helling CS, Dennison DG, Kaufman DD (1974) Fungicide movement in soils. Phytopathology 64:1091–1099.

    Article  CAS  Google Scholar 

  78. Hill BD, Schaalje GB (1985) A two-compartment model for the dissipation of deltamethrin from soil. J Agric Food Chem 33:1001–1009.

    Article  CAS  Google Scholar 

  79. Holst RA (1988) Personal Communication, US Environmental Protection Agency, Office of Pesticide Programs, Environmental Fate and Effects Division, Washington D.C.

    Google Scholar 

  80. Hornsby AG (1988) Managing pesticides for water quality protection. Environmental Engineering Technical Note (draft), USDA Soil conservation Service, Washington, DC, 49 pp.

    Google Scholar 

  81. Hornsby AG, Augustijn-Beckers PWM, Buttler TM (1988) Personal communication, University of Florida, Institute for Food and Agricultural Science, Gainesville, FL

    Google Scholar 

  82. Hornsby AG, Stamps RH, Buttler TM (1990) Leatherleaf fern: managing pesticides for crop production and water quality protection. Univ Florida Coop Ext Serv Circ 984 10 pp.

    Google Scholar 

  83. Hunter R (1984) QSAR Program. Center for Data Systems and Analysis, Montana State University.

    Google Scholar 

  84. Iwan J (1990) Personal communication, Schering AG, Dusseldorf, Germany.

    Google Scholar 

  85. Jones RL (1989) Personal communication, Rhone-Poulenc Ag Company, Research Triangle Park, NC.

    Google Scholar 

  86. Jones RL, Hornsby AG, Rao PSC (1988) Degradation and movement of aldicarb residues in Florida citrus soils. Pestic Sci 23:307–325

    Article  CAS  Google Scholar 

  87. Jury WA, Focht DC, Farmer WJ (1987) Evaluation of pesticide groundwater pollution potential from standard indices of soil chemical adsorption and degradation. J Environ Qual 16:422–428.

    Article  CAS  Google Scholar 

  88. Kamienski FX (1989) Personal communication, Valent U.S.A. Corporation, Walnut Creek, CA.

    Google Scholar 

  89. Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10:833–845.

    Article  CAS  Google Scholar 

  90. Kaufman DD (1976) Literature survey of benchmark Pesticides. George Washington University, Washington, DC, 252 pp.

    Google Scholar 

  91. Kenaga EE (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol Environ Saf 4:26–38.

    Article  PubMed  CAS  Google Scholar 

  92. Kidd H, Hartley D (1988) Pesticide Index. Royal Society of Chemistry, Nottingham England. 258 pp.

    Google Scholar 

  93. King PH, McCarty PL (1968) A chromatographic model for predicting pesticide migration in soils. Soil Sci 106:248–261.

    Article  CAS  Google Scholar 

  94. Ladlie JS, Megget WF, Penner D (1976) Effect of soil pH on microbial degradation, adsorption, and mobility of metribuzin. Weed Sci 24:477–481.

    CAS  Google Scholar 

  95. Laskowski DA, Swann RL, McCall PJ, Bidlack HD (1983) Soil degradation studies. Residue Rev 85:139–147.

    CAS  Google Scholar 

  96. Lee CC, Green RE, Apt WJ (1986) Transformation and adsorption of fenamiphos, f. sulfoxide and f. sulfone in Molokai soil and simulated movement with irrigation. J Contam Hydrol 1:211–225.

    Article  CAS  Google Scholar 

  97. Lenz MF (1990) Personal Communication, Mobay, Environmental Fate Research and Development Department, Bayer USA, Stilwell, KS.

    Google Scholar 

  98. Leonard RA (1990) Movement of pesticides into surface waters. In: Cheng HH (ed) Pesticides in the soil environment: processes, impacts, and modeling. Soil Sci Soc Am Book Ser No.2, Soil Science Society of America. Madison, WI, pp 303–349.

    Google Scholar 

  99. Leonard RA, Baily GA, Swank RR (1976) Transport, detoxification, fate and effects of pesticides in soil and water environments. In: Soil Conservation Society of America (eds) Land application of wate materials. Soil Conservation Society of America, Ankeny Iowa, pp 48–78.

    Google Scholar 

  100. Lichtenstein EP, Schulz KR (1970) Volatization of insecticides from various substrates. J Agric Food Chem 18:814–818.

    Article  PubMed  CAS  Google Scholar 

  101. Liu SL, Weber JB (1986) Adsorption/desorption and mobility of propiconazole and prometryn in soils. Proc South Weed Sci Soc 39:460–471.

    Google Scholar 

  102. Lo CC, Merkle MG (1984) Factors affecting the phytotoxicity of norflurazon. Weed Sci 32:279–283.

    CAS  Google Scholar 

  103. Loh A, Parka SJ, Albritton R, Lin CC (1979) Use of adsorption coefficients and soil properties to predict fluridone herbicidal activity. Weed Sci 27: 456–459.

    CAS  Google Scholar 

  104. Loux MM, Liebl RA, Slife FW (1989) Adsorption of imazaquin and imazethapyr on soils, sediments, and selected adsorbents. Weed Sci 37:712–718.

    CAS  Google Scholar 

  105. Lyman WJ, Reehl WF, Rosenblatt DH (1982) Handbook of Chemical Property Estimation Methods. McGraw-Hill Book Company, New York, 960 pp.

    Google Scholar 

  106. Mackay D, Leinonen PJ (1975) Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environ Sci Technol 9:1178–1180.

    Article  CAS  Google Scholar 

  107. Mackay D, Paterson S (1981) Calculating fugacity. Environ Sci Technol 15:1006–1014,

    Article  Google Scholar 

  108. Mackay D, Bobra A, Shiu WY (1980) Relationships between aqueous solubility and octanol-water partition coefficients. Chemosphere 9:701–711.

    Article  CAS  Google Scholar 

  109. McCall PJ, Laskowski DA, Swann RL, Dishburger HJ (1983) Estimation of environmental partitioning of organic chemicals in model ecosystems. Residue Rev 85:231–244.

    CAS  Google Scholar 

  110. McCall PJ, Laskowski DA, Swann RL, Dishburger HJ (1980) Measurement of sorption coefficients for chemicals and their use in environmental fate and movement of toxicants. In: Zweig G, Beroza M (eds) Test protocols for environmental fate and movement of toxicants. Assoc Offic Anal Chemists, Arlington, VA. pp 89–109.

    Google Scholar 

  111. McCall PJ, Swann RL, Laskowski DA, Unger SM, Vrona SA, Dishburger HJ (1980) Estimation of chemical mobility in soil from liquid chromatographic retention times. Bull Environ Contam Toxicol 24:190–195.

    Article  PubMed  CAS  Google Scholar 

  112. McDowell LL, Willis GH, Murphree LM, Southwick LM, Smith S (1981) Toxaphene and sediment yields in runoff from a Mississippi Delta watershed. J Environ Qual 10:120–125.

    Article  CAS  Google Scholar 

  113. Meister Publishing Company (1990) Farm Chemical Handbook. Meister Publishing Company, Willoughby, OH, 700 pp.

    Google Scholar 

  114. Meister Publishing Company (1991) Farm Chemicals Handbook. Meister Publishing Company, Willoughby, OH, 745 pp.

    Google Scholar 

  115. Melnikov NN (1971) Chemistry of pesticides. Residue Rev 36:1–480.

    PubMed  CAS  Google Scholar 

  116. Mohana D, Rao PSC, Satyanarayana M (1980) Persistence of endosulfan in soils. J Agric Food Chem 28:1099–1101.

    Article  Google Scholar 

  117. Moore, W.T. (1963) Physical Chemistry, 3rd Ed. Prentice-Hall, Englewood Cliffs, NJ, 844 pp.

    Google Scholar 

  118. Moye HA, Miles CJ (1988) Aldicarb contamination of groundwater. Rev Environ Contam Toxicol 105:99–146.

    PubMed  CAS  Google Scholar 

  119. Muir DCG, Grift NP, Blouw AP, Lockhart WL (1980) Persistence of fluridone in small ponds. J Environ Qual 9:151–156.

    Article  CAS  Google Scholar 

  120. Murray DS, Santelmann PW, Davidson JM (1975) Comparative adsorption, desorption, and mobility of dipropetryn and prometryn in soil. J Agric Food Chem 23:578–582.

    Article  PubMed  CAS  Google Scholar 

  121. Nash RG, Beal ML (1980) Fate of maneb and zineb fungicides in microagroecosystem chambers. J Agric Food Chem 28:322–330.

    Article  PubMed  CAS  Google Scholar 

  122. Neary DG (1985) Fate of pesticides in Florida’s forests: an overview of potential impacts on water quality. Soil Crop Sci Soc Fl Proc 44:18–24.

    CAS  Google Scholar 

  123. Neely WB, Blau GE, Alfrey T Jr (1986) Mathematical models to predict concentration-time profiles resulting from a chemical spill in a river. Environ Sci Technol 10:72–76.

    Article  Google Scholar 

  124. Nelson NH, Faust SD (1969) Acidic dissociation constants of selected aquatic herbicides. Environ Sci Technol 3:1186–1188.

    Article  CAS  Google Scholar 

  125. Nofziger D, Hornsby AG, Rao PSC (1988) Chemrank: Interactive software for ranking the potential of organic chemicals to contaminate groundwater. Circular 788, Florida Cooperative Extension Service, Institute for Food and Agricultural Sciences, University of Florida, Gainesville FL, 56 pp.

    Google Scholar 

  126. Norris LA (1981) The movement, persistence, and fate of the phenoxy herbicides and TCDD in the forest. Residue Rev 80:65–135.

    Google Scholar 

  127. Oliver BC, McCraren JP, Eller L (1969) Effects of dichlobenil on two fishpond environments. Weed Sci 17:158–165.

    Google Scholar 

  128. Oliver GR (1989) Personal Communication, Dow Chemical U.S.A., Midland, MI.

    Google Scholar 

  129. Oliver GR, Woodburn KB, Bjerke EL, Gantz RL (1989) Leaching and adsorption of clopyralid in a rangeland environment Down To Earth 45(1): 17–20.

    Google Scholar 

  130. Ou L (1988) Personal Communication, Soil Science Department, University of Florida, Gainesville FL.

    Google Scholar 

  131. Pionke HB, Deangelis RJ, Nash RG (1980) Chapters 17 and 18. In: Knisel WG (ed) CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems. USDA Rep. no. 26, USDA, Washington, DC, pp 560–643.

    Google Scholar 

  132. Rao PSC, Davidson JM (1979) Adsorption and movement of selected pesticides at high concentrations in soils. Water Res 13:375–380.

    Article  CAS  Google Scholar 

  133. Rao PSC, Burkhesiser VE, Ou LT (1984) Estimation of parameters for modeling behavior of selected pesticides and orthophosphate. US Environmental Protection Agency Rep No EPA-600/3-84-019, 181 pp.

    Google Scholar 

  134. Rao PSC, Davidson JM (1980) Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models. In: Overcash MR, Davidson JM (eds) Environmental impact of nonpoint source pollution. Ann Arbor Science Publications, Inc., Ann Arbor, MI, pp 23–67.

    Google Scholar 

  135. Rao PSC, Hornsby AG, Jessup RE (1985) Indices for ranking the potential for pesticide contamination of groundwater. Soil Crop Sci Soc Fl Proc 44:1–8.

    CAS  Google Scholar 

  136. Rao PSC, Nkedi-kizza P, Davidson JM, Ou LT (1983) Retention and transformations of pesticides in relation to non-point source pollution from croplands. In: Schaller FW, Bailey GW (eds) Agricultural management and water quality. Iowa State University Press, Ames, IA pp 126–140.

    Google Scholar 

  137. Reinert KH, Rodgers JH Jr (1984) Influence of sediment types on the sorption of endothall. Bull Environ Contam Toxicol 32:557–564.

    Article  PubMed  CAS  Google Scholar 

  138. Renner KA, Meggitt WF, Penner D (1988) Effect of soil pH on imazaquin and imazethapyr adsorption to soil and phyotoxicity to corn. Weed Sci 36:78–83.

    CAS  Google Scholar 

  139. Rhodes RC (1977) Studies with manganese [14C]ethylenebis (dithiocarbamate) ([14C]maneb) fungicide and [14C]ethylenethiourea ([l4C]ETU) in plants, soil, and water. J Agric Food Chem 25; 528–533.

    Article  PubMed  CAS  Google Scholar 

  140. Royal Society of Chemistry (1983) The Agrochemicals Handbook. Royal Society of Chemistry, Nottingham, England, 425 pp.

    Google Scholar 

  141. Royal Society of Chemistry (1987) The Agrochemicals Handbook, 2nd Ed and updates dated April 1988, December 1988, June 1989, December 1989. Royal Society of Chemistry, Nottingham, England, 1181 pp.

    Google Scholar 

  142. Russell MH (1989) Personal communication, E.I. du Pont de Nemours and Company, Wilmington, DE,

    Google Scholar 

  143. Ryan JJ, McLeod HA (1979) Chemical methods for the analysis of veterinary drug residues in food, part I. Residue Rev 71:1–82.

    PubMed  CAS  Google Scholar 

  144. Saleh FY, Dickson KL, Rodgers JHJr (1982) Fate of lindane in the aquatic environment: rate constants of physical and chemical processes. Environ Toxicol Chem 1:289–297.

    Article  CAS  Google Scholar 

  145. Schering Company (1990) Amitraz, Informationen zum Wirkstoff. Information pamphlet published by Schering AG Pflanzenschutz, Dusseldorf, Germany, 16 pp.

    Google Scholar 

  146. Schwarzenbach RP, Westall J (1981) Transport of nonpolar organic compounds from surface water to groundwater: laboratory sorption studies. Environ Sci Technol 15:1360–1367.

    Article  CAS  Google Scholar 

  147. Scott HD, Phillips RE (1972) Diffusion of selected herbicides in soil. Soil Sci Soc Am Proc 36:714–719.

    Article  CAS  Google Scholar 

  148. Sharom MS, Miles JRW, Harris CR, McEwen FL (1980) Behaviour of 12 insecticides in soil and aqueous suspensions of soil and sediment.Water Res 14:1095–1100.

    Article  CAS  Google Scholar 

  149. Shiu WY, Ma KC, Mackay D, Seiber JN, Wauchope RD (1990) Solubilities of pesticides chemicals in water. I. Environmental physical chemistry. Rev Environ Contam Toxicol 116:1–13.

    PubMed  CAS  Google Scholar 

  150. Shiu WY, Ma KC, Mackay D, Seiber JN, Wauchope RD (1990) Solubilities of pesticides chemicals in water. II. Data compilation. Rev Environ Contam Toxicol 116:15–187.

    PubMed  CAS  Google Scholar 

  151. Smith AE (1978) Relative persistence of di- and tri-chlorophenoxyalkanoic acid herbicides in Saskatchewan soils. Weed Res 18:275–279.

    Article  CAS  Google Scholar 

  152. Smith TM, Stration GW (1986) Effects of synthetic pyrethroid insecticides on nontarget organisms, Residue Rev 97:93–120.

    PubMed  CAS  Google Scholar 

  153. Spencer WF, Cliath MM (1970) Vapor density and apparent vapor pressure of lindane. J Agric Food Chem 18:529–530.

    Article  PubMed  CAS  Google Scholar 

  154. Spencer WF, Farmer WJ, Cliath MM (1973) Pesticide volatilization. Residue Rev 49:1–47.

    CAS  Google Scholar 

  155. Spencer WF, Shoup TD, Cliath MM, Farmer WJ, Haque R (1979) Vapor pressures and relative volatility of ethyl and methyl parathion. J Agric Food Chem 27:273–278.

    Article  CAS  Google Scholar 

  156. Sprankle P, Meggitt WF, Penner D (1975) Absorption, action and translocation of glyphosate. Weed Sci 23:235–240.

    CAS  Google Scholar 

  157. Sund KA, Steller WA (1989) Personal Communication, American Cyanamid Company, Princeton, NJ.

    Google Scholar 

  158. Suntio LR, Shiu WY, Mackay D, Seiber JN, Glotfelty D (1988) Critical review of henry’s law constants for pesticides. Rev Environ Contam Toxicol 103:1–59.

    CAS  Google Scholar 

  159. Szeto SY, Sundaram KMS (1982) Behavior and degradation of Chlorpyrifos-methyl in two aquatic models. J Agric Food Chem 30:1032–1035.

    Article  CAS  Google Scholar 

  160. Travis KZ (1990) Personal Communication, ICI Agrichemicals, Berkshire, England.

    Google Scholar 

  161. United States Environmental protection Agency (1984) Groundwater Data Call-In Files. Office of Pesricide Programs, Environmental Fate and Effects Division, Washington D.C.

    Google Scholar 

  162. United States Environmental Protection Agency (1988) Pesticide Fact Handbook, 2 vols. Noyes Data Corp, Park Ridge, NJ 827–660 pp.

    Google Scholar 

  163. United States Environmental Protection Agency (1988) Personal communication. Office of Drinking Water, Washington DC.

    Google Scholar 

  164. United States Environmental Protection Agency (1989) Drinking Water Health Advisory. Lewis Publishers, Chelsea, MI, 819 pp.

    Google Scholar 

  165. United States Environmental Protection Agency (1989) Pesticide environmental fate “one-line” summary. Environmental Fate and Ground Water Branch, USEPA, Washington DC.

    Google Scholar 

  166. United States Environmental Protection Agency (1990) National survey of pesticides in drinking water wells-phase I report. U.S. EPA Rep 570/9-90-015, 98 pp.

    Google Scholar 

  167. United States Envernmental Protection Agency (1990) Suspended, Cancelled, And Restricted Pesticides. EPA, Washington DC.

    Google Scholar 

  168. Van Hoogstraten SD, Baker C, Harne SD (1974) Ethofumesate behaviour in the soil. Proc Brit Weed Contr Conf 12:503–509.

    Google Scholar 

  169. Verschueren K (1983) Handbook of Environmental Data on Organic Chemicals, 2nd ed. Van Nostrand Reinold Company, New York, NY, 1310 pp.

    Google Scholar 

  170. Vettorazzi G (1977) State of the art of toxicological evaluation carried by the joint FAO/WHO expert committee on pesticide residues III. Residue Rev 66:137–182.

    PubMed  CAS  Google Scholar 

  171. Walker A, Welch SJ (1989) The relative movement and persistence in soil of chlosulfuron, metsulfuron-methyl and triasulfuron. Weed Res 29:375–383.

    Article  CAS  Google Scholar 

  172. Wauchope RD (1976) Acid dissociation constants of arsenic acid, methylarsonic acid (MAA), dimethylarsinic acid (Cacodylic Acid), and N-(Phosphonomethyl) glycine (Glyphosate). J Agric Food Chem 24:717–721.

    Article  CAS  Google Scholar 

  173. Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields-a review. J Environ Qual 7:459–472.

    Article  CAS  Google Scholar 

  174. Wauchope RD, Hornsby AG, Goss DW, Burt JP (1990) The SCS/ARS/CES pesticide properties database: I. A set of values for first-tier comparative water pollution risk analysis. Proc 3rd Natl Conf Pesticides in the Next Decade: the Challenges Ahead. Water Resources Res Inst, Blacksburg VA, 831 pp.

    Google Scholar 

  175. Weast RC (1983) CRC Handbook of Chemistry and Physics., 64th Ed. Chemical Rubber Press, Inc. Boca Raton, FL, 2308 pp.

    Google Scholar 

  176. Weber JB (1970) Adsorption of s-triazines by montmorillonite as a function of pH and molecular structure. Soil Sci Soc Am Proc 34:401–404.

    Article  CAS  Google Scholar 

  177. Weber JB (1972) Interaction of Organic Pesticides with Particulate Matter in Aquatic and soil Systems. In: Gould RF (ed) Fate of organic pesticides in the aquatic environment. Adv Chem Ser 111:55–120.

    Chapter  Google Scholar 

  178. Weber JB (1977) The pesticide scorecard. Environ Sci Technol 11:756–761.

    Article  CAS  Google Scholar 

  179. Weber JB (1980) Ionization of buthidazole, VEL 3510, terbuthiuron, fluridone, metribuzin, and prometryn. Weed Sci 28:467–474.

    CAS  Google Scholar 

  180. Weed Science Society of America (1979) Herbicide Handbook, 4th Ed. Weed Science Society of America, Champaign IL, 479 pp.

    Google Scholar 

  181. Weed Science Society of America (1983) Herbicide Handbook, 5th Ed., Weed Science Society of America, Champaign, IL. 515 pp.

    Google Scholar 

  182. Weed Science Society of America (1989) Herbicide Handbook, 6th Ed., Weed Science Society of America, Champaign, IL. 301 pp.

    Google Scholar 

  183. Wehtje G, Dickens R, Wilcut JW, Hajek BF (1987) Sorption and mobility of sulfometuron and imazapyr in five Alabama soils. Weed Sci 35:858-864.

    CAS  Google Scholar 

  184. West SD, Burger RO, Poole GM, Moivrey DH (1983) Bioconcentration and field dissipation of the aquatic herbicide fluridone and its degradation products in aquatic environments. J Agric Food Chem 31:579–585.

    Article  CAS  Google Scholar 

  185. Zepp RG, Wolfe NL, Gordon JA, Baughman G (1975) Dynamics of 2,4–D esters in surface water: hydrolysis, photolysis, and vaporization. Environ Sci Technol 9:1144–1150.

    Article  CAS  Google Scholar 

  186. Zepp RG, Wolfe NL, Gordon JA, Fincher RC (1976) Light-induced transformations of methoxychlor in aquatic systems. J Agric Food Chem 24:727-733.

    Article  PubMed  CAS  Google Scholar 

  187. Zubkoff PL, Regelman E (1991) EPA Environmental Fate One-Liner Data Base Version 2, Feb. 1991, EPA-OPP, Washington DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Wauchope, R.D., Buttler, T.M., Hornsby, A.G., Augustijn-Beckers, P.W.M., Burt, J.P. (1992). The SCS/ARS/CES Pesticide Properties Database for Environmental Decision-Making. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 123. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2862-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2862-2_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7699-9

  • Online ISBN: 978-1-4612-2862-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics