Skip to main content

Diagnostic systems by model selection: a case study

  • Conference paper

Part of the book series: Lecture Notes in Statistics ((LNS,volume 89))

Abstract

Probabilistic systems for diagnosing blue babies are constructed by model selection methods applied to a database of cases. Their performance are compared with a system built primarily by use of expert knowledge. Results indicate that purely automatic methods do not quite perform at the level of expert based systems, but when expert knowledge is incorporated properly, the methods look very promising.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. (1974). A new look at the statistical model identification.IEEE Transactions on Automatic Control,19, 716–723.

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, L. R, Krebs, J. H., and Andersen, J. D. (1991). STENO: An expert system for medical diagnosis based on graphical models and model search.Journal of Applied Statistics,18, 139–153.

    Article  Google Scholar 

  3. Andersen, S. K., Olesen, K. G., Jensen, F. V., and Jensen, F. (1989). HUGIN - A shell for building Bayesian belief universes for expert systems. In Proc. 11th Int. Joint Conference on Artificial Intelligence, 1080–1085.

    Google Scholar 

  4. Badsberg, J. H. (1991). A guide to CoCo. Technical Report R-91-43, Dept. of Mathematics and Computer Science, Aalborg University.

    Google Scholar 

  5. Dawid, A. R (1979). Conditional independence in statistical theory (with discussion).Journal of the Royal Statistical Society, Series B,41, 1–31.

    MathSciNet  MATH  Google Scholar 

  6. Dawid, A. P. (1982). The well-calibrated Bayesian (with discussion). Journal of the American Statistical Association, 77, 605–613.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dawid, A. P. (1986). Probability forecasting. In Kotz, S. and Johnson, N. L., editors, Encyclopedia of Statistical Sciences, Volume 4, Wiley, New York.

    Google Scholar 

  8. Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems.Statistics and Computing, 2, 25–36.

    Article  Google Scholar 

  9. Edwards, D. and Havránek, T. (1985). A fast procedure for model search in multidimensional contingency tables.Biometrika, 72, 339–351.

    Article  MathSciNet  MATH  Google Scholar 

  10. Franklin, R. C. G., Spiegelhalter, D. J., Macartney, F., and Bull, K. (1989). Combining clinical judgements and statistical data in expert systems: over the telephone management decisions for critical congenital heart disease in the first month of life.Int. J. of Clinical Monitoring and Computing, 6, 157–166.

    Article  Google Scholar 

  11. Franklin, R. C. G., Spiegelhalter, D. J., Macartney, F., and Bull, K. (1991). Evaluation of a diagnostic algorithm for heart disease in neonates.British Medical Journal, 302, 935–939.

    Article  Google Scholar 

  12. Frydenberg, M. (1989). The chain graph Markov property.Scandinavian Journal of Statistics,17, 333–353.

    MathSciNet  Google Scholar 

  13. Højsgaard, S., Skjøth, F., and Thiesson, B. (1992). User’s guide to BIFROST. Dept. of Mathematics and Computer Science, Aalborg University.

    Google Scholar 

  14. Højsgaard, S. and Thiesson, B. (1993). BIFROST — Block recursive models Induced From Relevant knowledge, Observations and Statistical Techniques. To appear in Computational Statistics and Data Analysis.

    Google Scholar 

  15. Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. (1990). Bayesian updating in causal probabilistic networks by local computation.Computational Statistics Quarterly,4, 269–282.

    MathSciNet  Google Scholar 

  16. Kreiner, S. (1989). User’s guide to DIGRAM - a program for discrete graphical modelling. Tech. Report 89 - 10, Statistical Research Unit, Univ. of Copenhagen.

    Google Scholar 

  17. Lauritzen, S. L. (1989). Mixed graphical association models (with discussion). Scandinavian Journal of Statistics,16, 273–306.

    MathSciNet  MATH  Google Scholar 

  18. Lauritzen, S. L. (1993). The EM algorithm for graphical association models with missing data. To appear in Computational Statistics and Data Analysis.

    Google Scholar 

  19. Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems (with discussion).Journal of the Royal Statistical Society, Series B, 50, 157–224.

    MathSciNet  MATH  Google Scholar 

  20. Lauritzen, S. L. and Wermuth, N. (1989b). Graphical models for associations between variables, some of which are qualitative and some quantitative. Annals of Statistics, 17, 31–57.

    Article  MathSciNet  MATH  Google Scholar 

  21. Murphy, A. H. and Winkler, R. L. (1977). Reliability of subjective probability forecasts of precipitation and temperature.Applied Statistics,26, 41–47.

    Article  Google Scholar 

  22. Murphy, A. H. and Winkler, R. L. (1984). Probability forecasting in meteorology.Journal of the American Statistical Association,79, 489–500.

    Article  Google Scholar 

  23. Patefield, W. M. (1981). AS 159. An efficient method of generating random rxc tables with given row and column totals.Applied Statistics,30, 91–97.

    Article  MATH  Google Scholar 

  24. Shenoy, P. P. and Shafer, G. R. (1990). Axioms for probability and belief-function propagation. In Shachter, R. D. et al., editors, Uncertainty in Artificial Intelligence IV, pages 169–198, Amsterdam. North-Holland.

    Google Scholar 

  25. Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L., and Cowell, R. G. (1993). Bayesian analysis in expert systems (with discussion).Statistical Science,8, 219–247 and 204–283.

    Google Scholar 

  26. Thiesson, B. (1991). (G)EM algorithms for maximum likelihood in recursive graphical association models. Master’s thesis, Dept. of Mathematics and Computer Science, Aalborg University.

    Google Scholar 

  27. Wermuth, N. (1976). Model search among multiplicative models.Biometrics,32, 253–263.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wermuth, N. and Lauritzen, S. L. (1990). On substantive research hypotheses, condi-tional independence graphs and graphical chain models (with discussion).Journal of the Royal Statistical Society, Series B,52, 21–72.

    MathSciNet  Google Scholar 

  29. Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. John Wiley and Sons, Chichester.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Lauritzen, S.L., Thiesson, B., Spiegelhalter, D.J. (1994). Diagnostic systems by model selection: a case study. In: Cheeseman, P., Oldford, R.W. (eds) Selecting Models from Data. Lecture Notes in Statistics, vol 89. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2660-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2660-4_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94281-0

  • Online ISBN: 978-1-4612-2660-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics