Skip to main content

Part of the book series: Endocrinology and Metabolism ((EAM,volume 7))

  • 55 Accesses

Abstract

The existence of a physiological immunoneuroendocrine network working in fine harmony, and clearly contributing to homeostasis, has now been demonstrated. In this context, nervous, endocrine, and immune systems communicate with each other, using common mediators and respective receptors.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blalock JE. Neuroimmunoendocrinology. Chem Immunol 1992; 52: 1 – 190.

    Article  PubMed  CAS  Google Scholar 

  2. Van Ewijk W. T-cell differentiation is influenced by thymic microenviron- ments. Annu Rev Immunol 1991; 9: 591 – 615.

    Article  PubMed  Google Scholar 

  3. Nonoyama S, Nakayama M, Shiohara T, Yata J. Only dull CD3+ thymocytes bind to thymic epithelial cells. The binding is elicited by both CD2/LFA-3 and LFA-l/ICAM-1 interactions. Eur J Immunol 1989; 19: 1631 – 1635.

    Article  PubMed  CAS  Google Scholar 

  4. Janossy G, Thomas JA, Bollum FL, Granzer G, Pizzolo G, Bradstock KF, Wong L, Ganeshagun K, Hoffbrand AB. The human thymic microenvironment: An immunohistologic study. J Immunol 1980; 125: 202 – 212.

    PubMed  CAS  Google Scholar 

  5. Jenkinson EJ, Van Ewijk W, Owen JJ. Major histocompatibility complex antigen expression on the epithelium of developing thymus in normal and nude mice. J Exp Med 1981; 153: 280 – 292.

    Article  PubMed  CAS  Google Scholar 

  6. Savino W, Manganella G, Verley JM, Wolff A, Berrih S, Levasseur P, Binet JP, Dardenne M, Bach JF. Thymoma epithelial cells secrete thymic hormone but do not express class II antigens of the major histocompatibility complex. J Clin Invest 1985; 76: 1140 – 1146.

    Article  PubMed  CAS  Google Scholar 

  7. Van Ewijk W, Ron Y, Monaco J, Kapplier J, Marrack P, Le Meur H, Gerlinger P, Durand B, Benoist C, Mattis D. Compartimentalization of MHC class II gene expression in transgenic mice. Cell 1988; 53: 357 – 370.

    Article  PubMed  Google Scholar 

  8. Le PT, Tuck DT, Dinarello CA, Haynes BF, Singer KH. Thymic epithelial cells produce interleukin 1. J Immunol 1988; 138: 2520 – 2525.

    Google Scholar 

  9. Le PT, Lazorich S, Whichard LP, Yang YC, Clarck SC, Haynes BF, Singer KH. Human thymic epithelial cells produce IL-6, granulocyte-monocye CSF, and leukemia inhibitory factor. J Immunol 1990; 145: 3310 – 3315.

    PubMed  CAS  Google Scholar 

  10. . Le PT, Kurtzberg J, Brant SL, Nieldel JE, Haynes BH, Singer KH. Human thymic epithelial cells produce granulocyte and macrophage colony- stimulating factors. J Immunol 1988; 141: 1211 – 1218.

    PubMed  CAS  Google Scholar 

  11. Bach JF. Thymic hormones. Clinical Immunology and Allergy 1983; 3:133– 156.

    Google Scholar 

  12. Low TLK, Goldstein AL. Thymic hormones: An overview. In: Di sabata G, Langone JJ, Van vunakis H, eds. Immunological Techniques. Orlando: Acad. Press; 1985: 213 – 219.

    Google Scholar 

  13. Low TLK, Goldstein AL. Thymosins. Isolation, structural studies, and biological activities. In: Goldstein AL, eds. Thymic hormones and lymphokines. Basic Chemistry and clinical applications. New York: Plenum Press; 1984: 21 – 35.

    Google Scholar 

  14. Low TLK, Goldstein AL. Thymosin alphal and polypeptide betal. In: Di sabato G, Langone JJ, Vanvunakis H, eds. Immunochemical techniques. Orlando: Acad. Press; 1985; 116:233–255.

    Google Scholar 

  15. Haritos AA, Gooddall GJ, Horecker BL. Distribution of prothymosin alpha in rat tissues. Proc Natl Acad Sci USA 1984; 81: 1391 – 1396.

    Article  PubMed  CAS  Google Scholar 

  16. Low TLK, Goldstein AL. Chemical characterization of thymosin beta 4. J Biol Chem 1982; 257: 1000 – 1006.

    PubMed  CAS  Google Scholar 

  17. Andhya T, Schlesinger DH, Goldstein G. Complete aminoacid sequences of bovine thymopoietin I, II, III: Closely homologous polypeptides. Biochemistry 1981; 20: 6195 – 6202.

    Google Scholar 

  18. Goldstein G, Scheid MP, Boyse EA, Schlesinger DH, Van Wauve J. A synthetic pentapeptide with biological activity characteristic of the thymic hormone thymopoietin. Science 1979; 204: 1309 – 1313.

    Article  PubMed  CAS  Google Scholar 

  19. Trainin N, Handzell ZV, Pecht M. Biological and clinical properties of THF. Thymus 1985; 7: 137 – 150.

    PubMed  CAS  Google Scholar 

  20. Burstein Y, Buchner V, Pecht M, Trainin N. Thymic humoral factor gamma2: Purification and aminoacid sequence of an immunoregulatory peptide from calf thymus. Biochemistry 1988; 27: 4066 – 4071.

    Article  PubMed  CAS  Google Scholar 

  21. Bach JF, Dardenne M, Pleau JM, Rosa J. Biochemical characterization of a serum thymic hormone. Nature 1977; 266: 55 – 56.

    Article  PubMed  CAS  Google Scholar 

  22. Dardenne M, Pleau JM, Nabarra B, Lefrancier P, Derrien M, Choay J, Bach JF. Contribution of zinc and other metals to the biological activity of the serum thymic factor (FTS). Proc Natl Acad Sci USA 1982; 79: 5370 – 5373.

    Article  PubMed  CAS  Google Scholar 

  23. Dardenne M, Savino W. Neuroendocrine control of thymic epithelium: Modulation of thymic endocrine function, cytokeratin expression, and cell proliferation by hormones and neuropeptides. Prog Neuroendocrinimmunol 1990; 3: 18 – 25.

    Google Scholar 

  24. Baroni C. Thymus, peripheral lymphoid tissues, and immunological responsiveness of the pituitary dwarf mouse. Experientia 1967; 23: 282 – 284.

    Article  PubMed  CAS  Google Scholar 

  25. Ruitenberg EJ, Berkvens JM. The morphology of the endocrine system in congenitally athymic (nude) mice. J Pathol 1977; 121: 225 – 231.

    Article  PubMed  CAS  Google Scholar 

  26. Pierpaoli W, Kopp HG, Bianchi E. Interdependence of thymic and neuroendocrine functions in ontogeny. Clin Exp Immunol 1976; 24: 501 – 506.

    PubMed  CAS  Google Scholar 

  27. Michael SD, Taguchi O, Nishizuka Y. Effect of neonatal thymectomy on ovarian development and plasma LH, FSH, GH, and PRL in the mouse. Biol Reprod 1980; 22: 343 – 350.

    PubMed  CAS  Google Scholar 

  28. Nishizuka Y, Sakakura T. Thymus and reproduction: Sex-linked dysgenesis of the gonad after neonatal thymectomy in mice. Science 1969; 166: 753 – 755.

    Article  PubMed  CAS  Google Scholar 

  29. Rebar RW, Morandini IC, Erickson GF, Petze JE. The hormonal basis of reproductive defects in athymic mice: Diminished gonadotropin concentrations in pre-pubertal females. Endocrinology 1981; 108: 120 – 126.

    Article  PubMed  CAS  Google Scholar 

  30. Rebar RW, Morandini IC, Petze JE, Erickson GF. Hormonal basis of reproductive defects in athymic mice: Gonadotropins and testosterone in males. Biol Reprod 1982; 27: 1267 – 1276.

    Article  PubMed  CAS  Google Scholar 

  31. Rebar RW, Morandini IC, Bernirschke K, Petze JE. Reduced gonadotropins in athymic mice: Prevention by thymic transplantation. Endocrinology 1980; 107: 2130 – 2132.

    Article  PubMed  CAS  Google Scholar 

  32. Rebar RW, Miyake A, Low TL, Goldstein AL. Thymosin stimulates secretion of luteinizing hormone-releasing factor. Science 1981; 214: 669 – 671.

    Article  PubMed  CAS  Google Scholar 

  33. Hall JR, Mcgillis JP, Spangelo BL, Palaszynzki E, Moody T, Goldstein AL. Evidence for a neuroendocrine-thymus axis mediated by thymosin polypeptides. In: Serrou B, Rosenfeld C, Daniels JC, Saunders JP, eds. Current Concepts in Human Immunology and Cancer Immunomodulation. Amsterdam: Elsevier; 1982: 653 – 660.

    Google Scholar 

  34. Spangelo BL, Judd AM, Ross PC, Login IS, Jarvis WD, Badamchian M, Goldstein AL, Mac Leod RM. Thymosin fraction 5 stimulates prolactin and growth hormone release from anterior pituitary. Endocrinology 1987; 121: 2035 – 2043.

    Article  PubMed  CAS  Google Scholar 

  35. Farah JM, Hall NR, Bishop JF, Goldstein AL, O’Donohue TL. Thymosin fraction 5 stimulates secretion of immunoreactive beta-endorphin in mouse tumor cells. J Neurosci Res 1987; 18: 140 – 146.

    Article  PubMed  CAS  Google Scholar 

  36. Healy DL, Hodgen GD, Schulte HM, Chrousos GP, Loriaux DL, Hall NR, Goldstein AL. The thymus-adrenal connection: Thymosin has corticotropin- releasing activity in primates. Science 1983; 222: 1353 – 1355.

    Article  PubMed  CAS  Google Scholar 

  37. Spangelo BL, Hall NR, Dunn AJ, Goldstein AL. Thymosin fraction 5 stimulates the release of prolactin from cultured GH3 cells. Life Sci 1987; 40: 283 – 288.

    Article  PubMed  CAS  Google Scholar 

  38. Badamchian M, Spangelo BL, Damavandy T, Mac Leod RM, Goldstein AL. Complete amino acid sequence analysis of a peptide isolated from the thymus that enhances release of growth hormone and prolactin. Endocrinology 1991; 128: 1580 – 1588.

    Article  PubMed  CAS  Google Scholar 

  39. Reichhart R, Jornvall H, Carlquist M, Zeppezauer M. The primary structure of two polypeptide chains from preparations of homeostatic thymus hormone (HTH alpha and HTH bet) entire-chain identifies to two histones. FEBS Lett 1985; 188: 63 – 67.

    Article  PubMed  CAS  Google Scholar 

  40. Reichhart R, Zeppezauer M, Jornvall H. Preparations of hemeostatic thymus hormone consist predominantly of histones 2A and 2B and suggest additional histone functions. Proc Natl Acad Sci USA 1985; 82: 4871 – 4875.

    Article  PubMed  CAS  Google Scholar 

  41. Goya RG, Quigley KL, Takahashi S, Reichhart R, Meites J. Differential effect of homeostatic thymus hormone on plasma thyrotropin and growth hormone in young and old rats. Mech Ageing Dev 1989; 49: 119 – 128.

    Article  PubMed  CAS  Google Scholar 

  42. Goya RG, Sosa YE, Quigley KL, Reichhart R, Meites J. Homeostatic thymus hormone stimulates corticosterone secretion in a dose- and age-dependent manner in rats. Neuroendocrinology 1990; 51: 59 – 63.

    Article  PubMed  CAS  Google Scholar 

  43. Goldstein G, Audhya T. Thymopoietin to thymopentin experimental studies. In: Sundal E, eds. Thymopentin experimental and clinical medicine. (Survey Immunology Research). Basel: Karger; 1985: 1 – 21.

    Google Scholar 

  44. Malaise MG, Hauwaert C, Franchimont P, Danneskiold-Samsoe B, Bach- Andersen R, Gross D, Gerber H, Gerschpacher H, Stocker H, Bolla K. Treatment of active rheumatoid arthritis with slow intravenous injections of thymopentin. A double-blind placebo-controlled randomised study. Lancet 1985; 1: 832 – 836.

    Article  PubMed  CAS  Google Scholar 

  45. Malaise MG, Hazee-Hagelstein MT, Reuter AM, Vrinds-Gevaert Y, Goldstein G, Franchimont P. Thymopoietin and thymopentin enhance the levels of ACTH, beta-endorphin and beta-lipotropin from rat pituitary cells in vitro. Acta Endocrinol 1987; 115: 455 – 460.

    PubMed  CAS  Google Scholar 

  46. Savino W, Wolff B, Aratan-Spire S, Dardenne M. Thymic hormone containing cells. IV. Fluctuations in the thyroid hormone levels in vivo can modulate the secretion of thymulin by the epithelial cells of young mouse thymus. Clin Exp Immunol 1984; 55: 629 – 635.

    PubMed  CAS  Google Scholar 

  47. Fabris N, Mocchegiani E, Mariotti S, Pacini F, Pinchera A. Thyroid function modulates thymic endocrine activity. J Clin Endocrin Metab 1986; 62: 474 – 478.

    Article  CAS  Google Scholar 

  48. Savino W, Bartoccioni E, Homo-Delarche F, Gagnerault MC, Itoh T, Dardenne M. Thymic hormone containing cells—IX. Steroids in vitro modulate thymulin secretion by human and murine thymic epithelial cells. J Steroid Biochem 1988; 29: 135 – 140.

    Article  Google Scholar 

  49. Lannes-Vieira J, Dardenne M, Savino W. Extracellular matrix components of the mouse thymus microenvironment: Ontogenetic studies and modulation by glucocorticoid hormones. J Histochem Cytochem 1991; 39: 1539 – 1546.

    Article  PubMed  CAS  Google Scholar 

  50. Pelletier M, Montplaisir S, Dardenne M, Bach JF. Thymic hormone activity and spontaneous autoimmunity in dwarf and their littermates. Immunology 1976; 30: 783 – 788.

    PubMed  CAS  Google Scholar 

  51. Goff BL, Roth JA, Arp LH, Incefy GS. Growth hormone treatment stimulates thymulin production in aged dogs. Clin Exp Immunol 1987; 68: 580 – 587.

    PubMed  CAS  Google Scholar 

  52. Goya RG, Gagnerault MC, Leite de Moraes MC, Savino W, Dardenne M. In vivo effects of growth hormone on thymus function in aging mice. Brain Behav Immun 1992; 6: 341 – 354.

    Article  PubMed  CAS  Google Scholar 

  53. Kelley KW, Brief S, Weatly HJ, Novakofski J, Bechtel PJ, Simon J, Walker EB. GH3 pituitary adenoma cells can reverse thymic aging in rats. Proc Natl Acad Sci USA 1986; 83: 5663 – 5667.

    Article  PubMed  CAS  Google Scholar 

  54. Fabris N, Pierpaoli W, Sorkin E. Hormones and the immunological capacity. IV. Restorative effects of developmental hormones lymphocytes on the immunodeficiency syndrome of the dwarf mouse. Clin Exp Immunol 1971; 9: 227 – 240.

    PubMed  CAS  Google Scholar 

  55. Dardenne M, Savino W, Gagnerault MC, Itoh T, Bach JF. Neuroendocrine control of thymic hormonal production. I. Prolactin stimulates in vivo and in vitro the production of thymulin by human and murine thymic epithelial cells. Endocrinology 1989; 125: 1251 – 1260.

    Article  Google Scholar 

  56. Timsit J, Savino W, Safieh W, Chanson P, Gagnerault MC, Bach JF, Dardenne M. Growth hormone and insulin-like growth factor-1 stimulate hormonal function and proliferation of thymic epithelial cells. J Clin Endocrin Metab 1992; 75: 183 – 188.

    Article  CAS  Google Scholar 

  57. Ban E, Gagnerault MC, Jammes H, Postel-Vinay MC, Haour F, Dardenne M. Specific binding sites for growth hormone in cultured mouse thymic epithelial cells. Life Sci 1991; 48: 2141 – 2148.

    Article  PubMed  CAS  Google Scholar 

  58. Mocchegiani E, Paolucci P, Balsamo A, Cacciari E, Fabris N. Influence of growth hormone on thymic endocrine activity in humans. Horm Res 1990; 33: 248 – 255.

    Article  PubMed  CAS  Google Scholar 

  59. Russell DH, Kibler R, Matrisian L, Larson DF, Poulos B, Magun BE. Prolactin receptors on human and B lymphocyte: Antagonisms of prolactin binding by cyclosporine. J Immunol 1985; 134: 3027 – 3031.

    PubMed  CAS  Google Scholar 

  60. Dardenne M, Kelly PA, Bach JF, Savino W. Identification and functional activity of prolactin receptors in thymic epithelial cells. Proc Natl Acad Sci USA 1991; 88: 9700 – 9704.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Dardenne, M., Savino, W. (1994). Hormonal Intercations Between the Thymus and the Pituitary. In: Grossman, C.J. (eds) Bilateral Communication Between the Endocrine and Immune Systems. Endocrinology and Metabolism, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2616-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2616-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7608-1

  • Online ISBN: 978-1-4612-2616-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics