Skip to main content

Oncogenes in Renal Cell Carcinoma

  • Conference paper
Biology of Renal Cell Carcinoma

Abstract

Recent molecular studies have demonstrated that the accumulation of a variety of genetic aberrations is necessary for the initiation and progression of human cancers. This is consistent with the “multistep carcinogenesis” hypothesis, and accounts for the exponential relationship between the incidence rate and the age of onset of human cancers (1,2). Two types of genes have been implicated in the development of human cancers: oncogenes and tumor suppressor genes. The former can promote tumorigenesis by gene activation in a dominant mode. The latter contributes to tumor formation in a recessive or a dominant- present, 70 to 80 oncogenes and about 10 tumor suppressor genes have been identified. Although the activation of certain oncogenes definitely has an important role in the genesis of leukemias or lymphomas, it is widely accepted that the more frequently mutated genes are tumor suppressor genes in most human cancers (3). However, since tumor suppressor genes, like oncogenes, encode the proteins essential for cell differentiation and proliferation, both genes may be involved in the same control mechanism which regulates normal cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller DG. On the nature of susceptibility to cancer. Cancer 46: 1307–1318, 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Vogelstein B,Kinzler KW. The multistep nature of cancer. Trends Genet 9: 138–141, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci USA 90: 10914–10921, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Yao M, Shuin T, Misaki H, Kubota Y. Enhanced expression of e-myc and epidermal growth factor receptor (C-erbB-1)genes in primary human renal cancer. Cancer Res 48: 6753–6757, 1988.

    PubMed  CAS  Google Scholar 

  5. Weidner U, Peter S, Strohmeyer T, Hussnatter R, Aekermann R, Sies H. Inverse relationship of epidermal growth factor receptor and HER2/neu gene expression in human renal cell carcinoma. Cancer Rea 50: 4504–4509, 1990.

    CAS  Google Scholar 

  6. Gomella LG, Anglard P, Sargent ER, Robertson CN, Kasid A, LinehanWM. Epidermal growth factor receptor gene analysis in renal cell carcinoma. J Urol 143: 191–193, 1989.

    Google Scholar 

  7. Ishikawa J, Maeda S, Umezu K, Sugiyama T, Kamidono S. Amplification and overexpression of the epidermal growth factor receptor gene in human renal-cell carcinoma. Int J Cancer 45: 1018–1021,1990.

    Article  PubMed  CAS  Google Scholar 

  8. De Lareo JE, Todaro G. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 75: 4001–4005, 1978.

    Article  Google Scholar 

  9. Derynck R. Transforming growth factor a. Cell 54: 593–595, 1988.

    Article  PubMed  CAS  Google Scholar 

  10. Derynek R, Geoddel DV, Ullrieh A, et al. Synthesis of messenger RNAs for transforming growth factor α and β and the epidermal growth factor receptor by human tumors. Cancer Res 47: 707–712, 1987.

    Google Scholar 

  11. Mydlo JH, Miehaeli J, Cordon-Cardo C, Goldenberg AS, Heston WDW, Fair WR. Expression of transforming growth factor a and epidermal growth factor receptor messenger RNA in neoplastic and nonneoplastic human kidney tissue. Cancer Res 49; 3407–3411, 1989.

    PubMed  CAS  Google Scholar 

  12. Petrides PE, Bock S, Bovens J, Hoffmann R, Jakse G. Modulation of pro-epidermal growth factor, pro-transforming growth factor a and epidermal growth factor receptor gene expression in human renal carcinomas. Cancer Res 50: 3934–3939, 1990.

    PubMed  CAS  Google Scholar 

  13. Miki S, Iwano M, Mild Y, et al. Interleukin-6 (IL-6) functions as an in vitro autocrine growth factor in renal cell carcinomas. FEES Lett 250: 607–610, 1989.

    Article  CAS  Google Scholar 

  14. Takenawa J, Kaneko Y, Fukumoto M, et al. Enhanced expression of interleukin-6 in primary human renal cell carcinomas. J Natl Cancer Inst 83: 1668–1672, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Tsukamoto T, Kumamoto Y, Miyao N, Masumori N, Takahashi A, Yanase M. Interleukin-6 in renal cell carcinoma. J Urol 148: 1778–1782, 1992.

    PubMed  CAS  Google Scholar 

  16. Blay J, Negrier S, Combaret V, et al. Serum level of interleukin 6 as a prognostic factor in metastatic renal cell carcinoma. J Urol 52: 3317–3322, 1992.

    CAS  Google Scholar 

  17. Robbins PD, Horowits JM, Mulligan RC. Negative regulation of human c-fosexpression by the retinoblastoma gene product. Nature (Lond.); 346: 668–671, 1990.

    Article  CAS  Google Scholar 

  18. Pietenpol JA, Munger K, Howley PM, Stein RW, Moses HL. Factor-binding element in the human c-myc promoter involved in transcriptional regulation by transforming growth factor, β 1 and by the retinoblastoma gene product. Proc Natl Acad Sci USA 88: 10227–10231, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Xu G, O’Connell P, Viskochil D, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62: 599–608, 1990.

    Article  PubMed  CAS  Google Scholar 

  20. Martin GA, Viskochill D, Bollag G, et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63: 843–849, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Levine AI, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature (Lond.) 351: 453456, 1991.

    Google Scholar 

  22. Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell 70: 523–526, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Fakharzadel SS, Trusko SP, George DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10: 1565–1569, 1991.

    Google Scholar 

  24. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in humansarcomas. Nature (Lond.) 358: 80–83, 1992.

    Article  CAS  Google Scholar 

  26. Ladanyi M, Cha C, Lewis R, Jhanwar SC, Huvos AG, Healey JH. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res 53: 16–18, 1993.

    PubMed  CAS  Google Scholar 

  27. Leach FS, Tokino T, Metzer P, et al. p53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 53: 2231–2234, 1993.

    PubMed  CAS  Google Scholar 

  28. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations Cancer Res 53: 2736–2739, 1993.

    CAS  Google Scholar 

  29. Olumi AF, Tsai YC, Nichols PW, et al. Allelic loss of chromosome 17p distinguishes high grade from low grade transitional cell carcinomas of the bladder. Cancer Res 50: 7081–7083, 1990.

    PubMed  CAS  Google Scholar 

  30. Fujimoto K, Yamada Y, Okajima E, et al. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res 52: 1393–1398, 1992.

    PubMed  CAS  Google Scholar 

  31. Habuchi T, Ogawa O, Kakehi Y, et al. Allelic loss of chromosome 17p in urothelial cancer: strong association with invasive phenotype. J Urc-1 148: 1595–1599, 1992.

    CAS  Google Scholar 

  32. Ogawa O, Habuchi T, Kakehi Y, Koshiba M, Sugiyama T, Yoshida O. Allelic losses at chromosome 17p in human renal cell carcinoma are inversely related to allelic losses at chromosome 3p. Cancer Res 52: 1881–1885, 1992.

    PubMed  CAS  Google Scholar 

  33. Suzuki Y, Tamura G, Satodate R, Fujioka T. Infrequent mutation of p53 gene in human renal cell carcinoma detected by polymerase chain reaction single-strand conformation polymorphism analysis. Jpn JCancer Res 83: 233–235, 1992.

    CAS  Google Scholar 

  34. Brooks JD, Bova GS, Marshall FF, Issacs WB. Tumor suppressor gene allelic loss in human renal cancers. J Urol 150: 1278–1283, 1993.

    PubMed  CAS  Google Scholar 

  35. Reiter RE, Anglard P, Liu S, Gnarra JR, Linehan WM. Chromosome 17p deletion and p53 mutations in renal cell carcinoma. Cancer Res 53: 3092–3097, 1993.

    PubMed  CAS  Google Scholar 

  36. Presti JC Jr, Reuter VE, Cordon-Cardo C, Mazumdar M, Fair WR, Jhanwar, SC. Allelic deletions in renal tumors: histopathological correlations. Cancer Res 53: 5780–5783, 1993.

    PubMed  CAS  Google Scholar 

  37. Kastan MB, Onyinye O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311, 1991.

    PubMed  CAS  Google Scholar 

  38. Zbar B, Brauch H, Talmadge C, Linehan M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature (Lond.); 327: 721–724, 1987.

    Article  CAS  Google Scholar 

  39. Kovacs G, Erlandsson R, Boldog F, et al. Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc Natl Acad Sci USA 85: 1571–1575, 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Seizinger BR, Rouleau, GA, Ozelius LJ, et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature (Lond.) 332: 268–269, 1988.

    Article  CAS  Google Scholar 

  41. Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science (Wash.) 260: 1317–1320, 1993.

    Article  CAS  Google Scholar 

  42. Yamakawa K, Morita R, Takahashi E, Hon T, Ishikawa J, Nakamura Y. A detailed deletion mapping of the short arm of chromosome 3 in sporadic renal cell carcinoma. Cancer Res 51: 4707–4711, 1991.

    PubMed  CAS  Google Scholar 

  43. Morita R, Saito S, Ishikawa J, et al. Common regions of deletion on chromosome 5q, 6q, and l0q in renal cell carcinoma. Cancer Res 51: 5817–5820, 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York Inc.

About this paper

Cite this paper

Yoshida, O., Habuchi, T., Kinoshita, H., Ogawa, O. (1995). Oncogenes in Renal Cell Carcinoma. In: Biology of Renal Cell Carcinoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2536-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2536-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7571-8

  • Online ISBN: 978-1-4612-2536-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics