Skip to main content

Short-Time Correlation Approximations for Diffusing Tracers in Random Velocity Fields: A Functional Approach

  • Chapter
Stochastic Modelling in Physical Oceanography

Part of the book series: Progress in Probability ((PRPR,volume 39))

Abstract

The paper studies statistical characteristics of the passive tracer concentration field, and of its spatial gradient, in random velocity fields. Those include mean values, correlation functions as well as probability distributions. The functional approach is used. Influence of the mean flow (on the example of linear shear flow) and of the molecular diffusion coefficient on the statistical characteristics is analysed. Most of our analysis is conducted in the framework of the delta-correlated (in time) approximation and conditions for its applicabillity are established. We also consider approximations taking account of the positive but finite correlation radius, such as the telegraph process approximation and the diffusion approximation.

The authors made an effort to provide a broad perspective of and the background for the issues under consideration. To make the material accessible to physical scientists they tried to avoid use of overly abstract mathematical structures and conduct their presentation in the language and an idiom common in the physical and applied mathematics literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, (MIT Press, Cambridge, Mass., 1980).

    Google Scholar 

  2. G.T. Csanady, Turbulent Diffusion in the Environment, (D. Reidel Publ. Co, Dordrecht, 1980).

    Google Scholar 

  3. A. Okubo, Diffusion and Ecological Problems: Mathematical Models, (Springer-Verlag, N.Y., 1980).

    MATH  Google Scholar 

  4. M. Lesieur, Turbulence in Fluids, (Kluwer, Boston, 1990).

    Book  MATH  Google Scholar 

  5. W. McComb, The Physics of Fluid Turbulence, (Clarendon Press, Oxford, 1990).

    Google Scholar 

  6. G. Dagan, Theory of solute transport by groundwater, Ann. Rev. Fluid Mech., 19: 183 (1987).

    Article  MATH  Google Scholar 

  7. S.F. Shandarin and Ya.B. Zel’dovich, Turbulence, intermittency, structures in a self-gravitating medium: the large scale structure of the Universe, Rev. Modern Phys 61: 185 (1989).

    Article  MathSciNet  Google Scholar 

  8. S. Gurbatov, A. Malakhov and A. Saichev, Nonlinear random waves and turbulence in nondispersive media: waves, rays and particles, (Manchester U Press, Cambridge, 1991).

    MATH  Google Scholar 

  9. G.K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid. 1. General discussion and the case of small conductivity, J. Fluid Mech., 5: 113 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  10. G.K. Batchelor, I.D. Howells and A.A. Townsend, Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large condictivity, J. Fluid Mech., 5: 134 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  11. P.H. Roberts, Analytical theory of turbulent diffusion, J. Fluid Mech., 11: 257 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  12. R.H. Kraichnan, Small scale structure of scalar field convected by turbulence, Phys. Fluids 11: 945 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  13. R.H. Kraichnan, Diffusion by a random velocity field, Phys. Fluids 13: 22 (1970).

    Article  MATH  Google Scholar 

  14. P.G. Saffman, Application of the Wiener-Hermite expansion to the diffusion of passive scalar in a homogeneous turbulent flow, Phys. Fluids 12(9): 1786 (1972).

    Article  MathSciNet  Google Scholar 

  15. D. McLaughlin, G. Papanicolaou and O.R. Pironneau, Convection of microstructures and related problems, SIAM J. Appl. Math., 45: 780 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  16. V.I. Klyatskin, Statistical Depsription of Dynamical Systems with Fluctuating Parameters, (Nauka, Moscow, 1975, in Russian).

    Google Scholar 

  17. V.I. Klyatskin, Ondes at equations stochastiques dans les milieus aleatoirement non homogenes, (Editions de Physique, Besancon-Cedex, 1985, in French).

    Google Scholar 

  18. V.I. Klyatskin, Stochastic Equations and Waves in Random Media, (Nauka, Moscow, 1980, in Russian).

    Google Scholar 

  19. V.I. Klyatskin, Statistical description of the diffusion of tracers in random velocity fields, Physics-Uspekhi, 37(5): (1994).

    Google Scholar 

  20. L. Piterbarg, Short-correlation approximation in models of turbulent diffusion, in Stochastic Models in Geosystems, (IMA Volumes, Springer-Verlag, N.Y., 1995), to appear.

    Google Scholar 

  21. E. Hopf, Statistical hydrodynamics and functional calculus, J. Ration Mech. Anal. 1: 87 (1953).

    MathSciNet  Google Scholar 

  22. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys. 15: 1 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Avellaneda and A. Majda, Mathematical models with exact renormalization for turbulent transport, Comm. Math. Phys. 131: 381 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  24. A.J. Majda, The random uniform shear layer: An explicit example of turbulent diffusion with broad tail probability distribution, Phys. Fluids A 5(8): 1963 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Furutsu, On the statistical theory of electromagnetic waves in a fluctuating media, J. Res. NBS, D-67: 303(1963).

    Google Scholar 

  26. E.A. Novikov, Functionals and the random-force method in turbulence theory, Sov. Phys. JETP, 20(5): 1290 (1964).

    Google Scholar 

  27. V.R. Chechetkin, V.S. Lutovinov and A.A. Samokhin, On the diffusion of passive impurities in random flow, Physica A 175: 87 (1991).

    Article  Google Scholar 

  28. A.A. Samokhin and V.R. Chechetkin V.R., Diffusion of passive admixtures in a turbulent fluid, Izvestia Atmosph. Oceanic Physics 27(6): 434 (1991).

    Google Scholar 

  29. V.S. Lutovinov and V.R. Chechetkin, The Komogorov-Obukhov spectrum for the paired correlation function of passive tracers in a turbulent fluid, Izvestia Atmosph. Oceanic Physics 25(3): 195 (1989).

    Google Scholar 

  30. V.I. Klyatskin and A.I. Saichev, Statistical and dynamical localization of plane waves in randomly layered media, Sov. Phys. Usp. 35(3): 231 (1992).

    Article  Google Scholar 

  31. V.I. Klyatskin and W.A. Woyczynski, Dynamical and statistical characteristics of geophysical fields and waves and related boundary-value problems, Stochastic models in geosystems, (IMA Volumes, Springer-Verlag, N.Y. 1995), to appear.

    Google Scholar 

  32. A.I. Saichev and W.A. Woyczynski, Probability distributions of passive tracers in randomly moving media, in Stochastic Models in Geosystems, (IMA Volumes, Springer-Verlag, N.Y. 1995), to appear.

    Google Scholar 

  33. A.S. Gurvich and A.M. Yaglom, Breakdown of eddies and probability distributions for small-scale turbulence, Phys. Fluids Suppl. 10(9): 559 (1967).

    Article  Google Scholar 

  34. A.R. Kerstein and W.T. Ashurst, Lognormality of gradients of diffusive scalars in gomogeneous, two-dimensional mixing systems, Phys. Fluids 27(12): 2819 (1984).

    Article  MATH  Google Scholar 

  35. W.J.A. Dahm and K.A. Buch, Lognormality of the scalar dissipation pdf in turbulent flows, Phys. Fluids A1(7): 1290 (1989).

    Google Scholar 

  36. S.D. Rice, Mathematical analysis of random noise, Bell. Syst. Tech. J., 23: 282, (1944).

    MathSciNet  MATH  Google Scholar 

  37. S.D. Rice, Mathematical analysis of random noise, Bell. Syst. Tech. J., 24: 46, (1945).

    MathSciNet  MATH  Google Scholar 

  38. M.S. Longuet-Higgins, The statistical analysis of a random moving surface, Philos. Trans. R. Soc. London, Ser. A249: 321 (1957).

    Article  MathSciNet  Google Scholar 

  39. M.S. Longuet-Higgins, Statistical properties of an isotropic random surface, Philos. Trans. R. Soc. London, Ser. A250: 157(1957).

    Article  MathSciNet  Google Scholar 

  40. P. Swerling, Statistical properties of the countours of random surfaces, IRE Trans. Inf. Theory, IT-8: 315(1962).

    Article  MathSciNet  Google Scholar 

  41. M.B. Isichenko, Percolation, statistical topography, and transport in random media, Rev. Modern Phys., 64(4): 961 (1992).

    Article  MathSciNet  Google Scholar 

  42. C. Zirbel, Stochastic flows: dispersion of a mass distribution and Lagrangian observations of a random field (Ph.D. Dissertation, Princeton University, 1993).

    Google Scholar 

  43. E. Zambianchi and A. Griffa, Effects of finite scales of turbulence on disperions estimates, J. Marine Res. 52: 129 (1994).

    Article  Google Scholar 

  44. V.I. Klyatskin and W.A. Woyczynski, Fluctuations of passive scalar with nonzero mean concentration gradient in random velocity fields, Phys. Rev. Lett. (submitted).

    Google Scholar 

  45. A. Pumir, B. Shraiman and E. Siggia, Exponential tails and random advection, Phys. Rev. Lett., 66(23): 2984 (1991).

    Article  Google Scholar 

  46. J. Gollub, J. Clarke, M. Gharib, B. Lane and O. Mesquita, Fluctuations and transport in a stirred fluid with a mean gradient, Phys. Rev. Lett., 67(25): 3507 (1991).

    Article  Google Scholar 

  47. M. Holzer and A. Pumir, Simple models of non-Gaussian statistics for a turbulently advected passive scalar, Phys. Rev., E47(1): 202 (1993).

    MathSciNet  Google Scholar 

  48. A. Pumir, A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient, Phys. Fluids, A6(6): 2118 (1994).

    Article  MathSciNet  Google Scholar 

  49. M. Holzer and E. Siggia, Turbulent mixing of a passive scalar, Phys. Fluids 6(5): 1820 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Kerstein and P.A. McMurtry, Mean-field theories of random advection, Phys. Rev., E49(1): 474 (1994).

    Google Scholar 

  51. V.I. Klyatskin and V.I. Tatarskii, A new method of successive approximations in the problem of the propagation of waves in a medium having random large-scale inhomogeneities, Radiophysics and Quantum Electronics 14: 1100 (1971).

    Article  Google Scholar 

  52. A. Careta, F. Sagues, L. Ramirez-Piscina and J.M. Sancho, Effective diffusion in a stochastic velocity field, J. Stat. Phys. 71: 235 (1993).

    Article  MATH  Google Scholar 

  53. S.I. Vainstein, F.F. Ruzmaikin and Ya.B. Zel’dovich, Turbulent Dynamo in Astrophysics, (Nauka, Moscow, 1980, in Russian).

    Google Scholar 

  54. V.E. Shapiro and V.M. Loginov, Dynamical Systems under Random Influences, (Nauka, Novosibirsk, 1983, in Russian).

    Google Scholar 

  55. J.T. Lipscomb, A.L. Frenkel and D. Ter Haar, On the convection of a passive scalar by a turbulent Gaussian velocity field, J. Statistical Phys. 63: 305 (1991).

    Article  Google Scholar 

  56. V.I. Klyatskin, Approximations by delta-correlated random processes and diffusive approximation in stochastic problems, Lectures in Appl. Math, 27: 447 (1991).

    MathSciNet  Google Scholar 

  57. Ya.G. Sinai and V. Yakhot, Limiting probability distributions of a passive scalar in a random velocity field, Phys.Rev. Lett. 63: 1962 (1989).

    Article  Google Scholar 

  58. H. Chen, S. Chen and R.H. Kraichnan, Probability distribution of a stochastically advected scalar field, Phys. Rev. Lett. 63: 2657(1989).

    Article  Google Scholar 

  59. Y. Kimura and R.H. Kraichnan, Statistics of an advected passive scalar, Phys. Fluids A 5: 2264 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  60. F. Gao, An analytical solution for the scalar probability density function in homogeneous turbulence, Phys. Fluids A 3: 511 (1991).

    Article  MATH  Google Scholar 

  61. M. Avellaneda and A. Majda, An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows, Commun. Math. Phys., 138: 339 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  62. A.J. Majda, Random shearing direction models for isotropic turbulent diffusion, J. Stat. Phys. 75(516): 1153 (1994).

    Article  MATH  Google Scholar 

  63. B.I. Shraiman and E.D. Siggia. Lagrangian path integrals and fluctuations in random flow, Phys. Rev. E 49(4): 2912 (1994).

    Article  MathSciNet  Google Scholar 

  64. R.H. Kraichnan, Convection of a passive scalar by a quasi-uniform random straining field, J. Fluid Mech. 64(4): 737 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  65. R.H. Kraichnan, Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Letters 72(7): 1016 (1974).

    Article  Google Scholar 

  66. A. Bershadskii, Topological and fractal properties of turbulent passive scalar fluctuations at small scales J. Stat. Phys. 77: 909 (1994).

    Article  Google Scholar 

  67. S.A. Molchanov and L.I. Piterbarg, Heat transport in random flows, Russian J. Math. Phys. 1(3): 353 (1974).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Klyatskin, V.I., Woyczynski, W.A., Gurarie, D. (1996). Short-Time Correlation Approximations for Diffusing Tracers in Random Velocity Fields: A Functional Approach. In: Adler, R.J., Müller, P., Rozovskii, B.L. (eds) Stochastic Modelling in Physical Oceanography. Progress in Probability, vol 39. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2430-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2430-3_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7533-6

  • Online ISBN: 978-1-4612-2430-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics