Skip to main content

Part of the book series: Serono Symposia USA Norwell, Massachusetts ((SERONOSYMP))

Abstract

In the male, gamete production is continuous throughout adult life although some quantitative decline has been observed with advanced age. Only spermatogonia possess the capability of initiating and reinitiating the process of differentiation. In addition, these cells have the capability of self-renewal so that the population of stem cell spermatogonia is not depleted. It is generally thought that only a small percentage of total spermatogonia, the stem cells, possess the capability for self-renewal. Huckins has defined the spermatogonial stem cells morphologically as cells lacking connecting intercellular bridges with other spermatogonia and has called them As or Aisolated cells. In other words, the stem cell spermatogonia are isolated from other cells in whole-mount preparations of seminiferous tubules (1). Huckins’ scheme for spermatogonial renewal (Fig. 3.1 A) is the scheme best accepted by investigators familiar with this field (2–4). Using Huckins’ scheme, investigators from de Rooij’s laboratory (5) have calculated there are only 35,000 such cells in the testis of an adult mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huckins C. Spermatogonial intercellular bridges in whole-mounted seminiferous tubules from normal and irradiated rodent testis. Am J Anat 1978;153:97–122.

    Article  PubMed  CAS  Google Scholar 

  2. Oakberg EF, Huckins C. Spermatogonial stem renewal in the mouse as revealed by 3H-thymidine labeling and irradiation. In: Cairnnie AB, Lala PK, Osmond DG, eds. Stem cells and renewing cell populations. New York: Academic Press, 1976:287–302.

    Google Scholar 

  3. Huckins C, Oakberg EF. Morphological and quantitative analysis of spermatogonia in mouse testis using whole mounted seminiferous tubules. II. The irradiated testis. Anat Rec 1978;192:529–54.

    Article  PubMed  CAS  Google Scholar 

  4. de Rooij DG, van Dissel Emiliani FM, van Pelt AM. Regulation of spermatogonial proliferation. Ann N Y Acad Sci 1989;564:140–53.

    Article  PubMed  Google Scholar 

  5. Tegelenbosch RAJ, De Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 1993;290:193–201.

    Article  PubMed  CAS  Google Scholar 

  6. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 1994;91:11303–7.

    Article  PubMed  CAS  Google Scholar 

  7. Brinster RL, Zimmerman, JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 1994;91:11298–302.

    Article  PubMed  CAS  Google Scholar 

  8. Russell LD, França LR, Brinster RL. Ultrastructural observations of spermatogenesis in mice resulting from transplantation of mouse spermatogonia. J Androl 1996;17: 603–14.

    PubMed  CAS  Google Scholar 

  9. McGuinness MP, Orth JM. Gonocytes of male rats resume migratory activity post-natally. Eur J Cell Biol 1992;59:196–210.

    PubMed  CAS  Google Scholar 

  10. Jiang F-X, Short RV. Male germ cell transplantation in rats: apparent synchronization of spermatogenesis between host and donor seminiferous epithelia. Int J Androl 1995;18:326–30.

    Article  PubMed  CAS  Google Scholar 

  11. Dym M. Spermatogonial stem cells of the testis. Proc Natl Acad Sci USA 1994; 91:11287–9.

    Article  PubMed  CAS  Google Scholar 

  12. Boitani C, Giuditta P, Tiziana M. Spermatogonial cell proliferation in organ culture of immature rat testis. Biol Reprod 1993;48:761–7.

    Article  PubMed  CAS  Google Scholar 

  13. van Pelt AMM, Morena AR, van Dissel-Emiliani FMF, Boitani C, Gaemers IC et al. Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol Reprod 1996;55:439–44.

    Article  PubMed  Google Scholar 

  14. Cooker LA, Brooke CD, Kumari M, Hofman M, Millan J, Goldberg E. Genomic structure and promoter activity of the human testis lactate dehydrogenase gene. Biol Reprod 1993;48:1309–19.

    Article  PubMed  CAS  Google Scholar 

  15. Clouthier DE, Avarbock MR, Maika SD, Hammer RE, Brinster RL. Rat spermatogenesis in mouse testes following spermatogonial stem cell transplantation. Nature (Lond) 1996;381:418–21.

    Article  CAS  Google Scholar 

  16. Russell LD, Brinster RL. Ultrastructural observations of spermatogenesis following transplantation of rat testis cells into mouse seminiferous tubules. J Androl 1996;17: 615–27.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Russell, L.D., Brinster, R.L. (1998). Spermatogonial Transplantation. In: Zirkin, B.R. (eds) Germ Cell Development, Division, Disruption and Death. Serono Symposia USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2206-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2206-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7458-2

  • Online ISBN: 978-1-4612-2206-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics