Skip to main content

Transport Functions of the Glycocalyx, Specific Proteins, and Caveolae in Endothelium

  • Chapter
Whole Organ Approaches to Cellular Metabolism

Abstract

Our current understanding of the molecular, cellular, and physical basis of the barriers and pathways that mediate capillary permeability will be presented in this chapter. Some of the endothelial cell surface proteins involved in the structure and function of specific transendothelial transport pathways will be examined. Many studies utilizing a diversity of experimental approaches including biochemical, morphological, physiological, and theoretical analyses have led to a better understanding of the molecular basis of the interaction of plasma proteins with the endothelium, especially as it relates to those regions that form the critical permselective molecular filters controlling the transendothelial transport of blood molecules. New molecular approaches to investigating capillary permeability are only beginning to identify and characterize the molecular constituents that form or create the main pathways and barriers to molecular transport across vascular endothelium. The emphasis will be on the specific transport proteins of the luminal endothelial cell glycocalyx with a special focus on those proteins associated with noncoated plasmalemmal vesicles or caveolae. Aquaporin and albondin are the two proteins that will be discussed in the greatest detail because of their role in the selective transport of water and albumin, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, R. H. Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J. Physiol. (London) 428:1–13, 1990.

    CAS  Google Scholar 

  2. Adamson, R. H. and G. Clough. Plasma proteins modify the endothelial glycocalyx of frog mesenteric microvessels. J. Physiol. (London) 455:473–486, 1992.

    Google Scholar 

  3. Agre, P., G. M. Preston, B. L. Smith, J. S. Jung, S. Raina, C. Moon, W. B. Guggino, and S. Nielsen. Aquaporin CHIP: the archetypal molecular water channel. Am. Physiol. 265:F463–F476, 1993.

    CAS  Google Scholar 

  4. Bankston, P. W., G. A. Porter, A. J. Milici, and G. E. Palade. Differential and specific labeling of epithelial and vascular endothelial cells of the rat lung by Lycopersicon esculentum and Griffonia simplicifolia I lectins. Eur. J. Cell Biol. 54:187–195, 1991.

    PubMed  CAS  Google Scholar 

  5. Belaiba, R., P. Riant, S. Urien, F. Bree, E. Albengres, J. Barre, and J. P. Tillement. Blood binding and tissue transfer of drugs: the influence of a,-acid glycoprotein binding. In: Progress in Clin. and Biol. Res., Alpha 1 -Acid Glycoprotein: Genetics, Biochemistry, Physiological Functions, and Pharmacology, edited by P. Baumann, C. B. Eap, W. E. Müller, and J.-P. Tillement. New York: Alan R. Liss, Inc., 1989, pp. 287–305.

    Google Scholar 

  6. Belloni, P. N. and G. L. Nicolson. Differential expression of cell surface glycoproteins on various organ-derived microvascular endothelia and endothelial cell cultures. J. Cellular Physiol. 136:398–410, 1988.

    CAS  Google Scholar 

  7. Berthiaume, F. and J. A. Frangos. Flow-induced prostacyclin production is mediated by a pertussin toxin-sensitive G protein. FEBS Lett. 308:277–279, 1992.

    PubMed  CAS  Google Scholar 

  8. Brown, M. S. and J. L. Goldstein. Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in artherosclerosis. Annu. Rev. Biochem. 52:223–261, 1983.

    PubMed  CAS  Google Scholar 

  9. Bruns, R. R. and G. E. Palade. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J. Cell Biol. 37:244–276, 1968.

    PubMed  CAS  Google Scholar 

  10. Bumbasirevic, V., G. D. Pappas, and R. P. Becker. Endocytosis of serum albumingold conjugates by microvascular endothelial cells in rat adrenal gland: Regional differences between cortex and medulla. J. Submicrosc. Cytol. Pathol. 22:135–145, 1990.

    PubMed  CAS  Google Scholar 

  11. Bundgaard, M. The three-dimensional organization of smooth endoplasmic reticulum in capillary endothelia: its possible role in the regulation of free cytosolic calcium. J. Struct. Biol. 107:76–85, 1991.

    PubMed  CAS  Google Scholar 

  12. Bundgaard, M. and J. Frokjaer-Jensen. Functional aspects of the ultrastructure of terminal blood vessels: A quantitative study on conservative segments of the frog mesenteric microvasculature. Microvasc. Res. 23:1–30, 1982.

    PubMed  CAS  Google Scholar 

  13. Bundgaard, M., J. Frokjaer-Jensen, and C. Crone. Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc. Natl. Acad. Sci. USA 76:6439–6442, 1979.

    PubMed  CAS  Google Scholar 

  14. Bundgaard, M., P. Hagman, and C. Crone. The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvase. Res. 25:358–368, 1983.

    CAS  Google Scholar 

  15. Carley, W. W., A. J. Milici, and J. A. Madri. Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp. Cell Res. 178:426–434, 1988.

    PubMed  CAS  Google Scholar 

  16. Chambers, R. and B. W. Zweifach. Intercellular cement and capillary permeability. Physiol. Rev. 27:436–463, 1947.

    PubMed  CAS  Google Scholar 

  17. Crone, C. Tight and leaky endothelia. In: Water Transport Across Epithelia, edited by H. H. Ussing et al., Copenhagen: Munksgaard, 1981, pp. 259–267.

    Google Scholar 

  18. Crone, C. Modulation of solute permeability in microvascular endothelium. Fed. Proc. 45:77–83, 1986.

    PubMed  CAS  Google Scholar 

  19. Curry, F. E. Effect of albumin on the structure of the molecular filter at the capillary wall. Fed. Proc. 44:2610–2613, 1985.

    PubMed  CAS  Google Scholar 

  20. Curry, F. E. Modulation of venular microvessel permeability by calcium influx into endothelial cells. FASEB J. 6:2456–2466, 1992.

    PubMed  CAS  Google Scholar 

  21. Curry, F. E. and C. C. Michel. A fiber matrix model of capillary permeability. Microvasc. Res. 20:96–99, 1980.

    PubMed  CAS  Google Scholar 

  22. Curry, F. E., C. C. Michel, and M. E. Philips. Effect of albumin on the oncotic pressure exerted by myoglobin across capillary walls in frog mesentery. J. Physiol. 387:69–82, 1987.

    PubMed  CAS  Google Scholar 

  23. Curry, F. E., J. E. Rutledge, and J. F. Lenz. Modulation of microvessel wall charge by plasma glycoprotein orosomucoid. Am. J. Physiol. 257:H1354–H1359, 1989.

    PubMed  CAS  Google Scholar 

  24. Czartolomna, J., N. F. Voelkel, and S.-W. Chang. Permeability characteristics isolated perfused rat lungs. J. Appl. Physiol. 70:1854–1860, 1991.

    PubMed  CAS  Google Scholar 

  25. Danielli, J. F. Capillary permeability and oedema in the perfused frog. J. Physiol. 98:109–129, 1940.

    PubMed  CAS  Google Scholar 

  26. Davis, F. B., P. J. Davis, S. D. Blas, and D. Z. Gombas. Inositol phosphates modulate red blood cell Ca(2+)-adenosine triphosphatase activity in vitro by a guanine nucleotide regulatory protein. Metabolism 44:865–868, 1995.

    PubMed  CAS  Google Scholar 

  27. Davis, F. B., P. J. Davis, W. D. Lawrence, and S. D. Blas. Specific inositol phosphates inhibit basal and calmodulin-stimulated Ca(2+)-ATPase activity in human erythrocyte membranes in vitro and inhibit binding of calmodulin to membranes. FASEB J. 5:2992–2995, 1991.

    PubMed  CAS  Google Scholar 

  28. De Bruyn, P. P. H., S. Michelson, and P. W. Bankston. In vivo endocytosis by bristlecoated pits and intracellular transport of endogenous albumin in the endothelium of sinuses of liver and bone marrow. Cell Tissue Res. 240:1–7, 1985.

    PubMed  Google Scholar 

  29. Desjardins, C. and B. R. Duling. Heparinase treatment suggests a role for the endothelial glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258:H247–H254, 1990.

    Google Scholar 

  30. Drinker, C. K. The permeability and diameter of the capillaries in the web of the brown frog (R. temporaria) when perfused with solutions containing pituitary extract and horse serum. J. Physiol. 63:249–269, 1927.

    PubMed  CAS  Google Scholar 

  31. Dvorak, H. F., L. F. Brown, M. Detmar, and A. M. Dvorak. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J. Pathol. 146:1029–1039, 1995.

    PubMed  CAS  Google Scholar 

  32. Dvorak, H. F., J. A. Nagy, J. T. Dvorak, and A. M. Dvorak. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 133:95, 1988.

    PubMed  CAS  Google Scholar 

  33. Engel, A., T. Walz, and P. Agre. The aquaporin family of membrane water channels. Curr. Opin. Struct. Bio. 4:545–553, 1994.

    CAS  Google Scholar 

  34. Fajardo, L. F. The complexity of endothelial cells. Am. J. Clin. Pathol. 92:241–250, 1989.

    PubMed  CAS  Google Scholar 

  35. Farrell, C. L. and W. M. Pardridge. Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: An electron microscopic immunogold study. Proc. Natl. Acad. Sci. USA 88:5779–5783, 1991.

    PubMed  CAS  Google Scholar 

  36. Finkelstein, A. Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes. Theory and Reality. New York: Wiley, 1987.

    Google Scholar 

  37. Folkesson, G. H., M. A. Matthay, H. Hasegawa, F. Kheradmand, and A. S. Verkman. Transcellular water transport in lung alveolar epithelium through mercury-sensitive water channels. Proc. Natl. Acad. Sci. USA 91:4970–4974, 1994.

    PubMed  CAS  Google Scholar 

  38. Frokjaer-Jensen, J. Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J. Ultrastructure Res. 73:9–20, 1980.

    CAS  Google Scholar 

  39. Frokjaer-Jensen, J. The endothelial vesicle system in cryofixed frog mesenteric capillaries analysed by ultrathin serial sectioning. J. Electron Microscopy Tech. 19:291–304, 1991.

    CAS  Google Scholar 

  40. Frokjaer-Jensen, J., R. C. Wagner, S. B. Andrews, P. Hagman, and T. S. Reese. Three-dimensional organization of the plasmalemmal vesicular system in directly frozen capillaries of the rete mirabile. Cell Tissue Res. 254:17–24, 1988.

    PubMed  CAS  Google Scholar 

  41. Galis, Z., L. Ghitescu, and M. Simionescu. Fatty acid binding to albumin increases its uptake and transcytosis by the lung capillary endothelium. Eur. J. Cell Biol. 47:358–365, 1988.

    PubMed  CAS  Google Scholar 

  42. Gamble, J. Influence of pH on capillary filtration coefficient of rat mesenteries perfused with solutions containing albumin. J. Physiol. Lond. 387:69–82, 1983.

    Google Scholar 

  43. Garcia-Cardena, G., P. Oh, J. Liu, J. E. Schnitzer, and W. C. Sessa. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: Implication for nitric oxide signaling. Proc. Natl. Acad. Sci. USA 93:6448–6453, 1996.

    PubMed  CAS  Google Scholar 

  44. Geoffrey, J. S. and R. P. Becker. Endocytosis by endothelial phagocytes: Uptake of bovine serum albumin-gold conjugates in bone marrow. J. Ultrastructural Res. 89:223–239, 1984.

    Google Scholar 

  45. Ghinea, N., M. Eskenasy, M. Simionescu, and N. Simionescu. Endothelial albumin binding proteins are membrane-associated components exposed on the cell surface. J. Biol. Chem. 264:4755–4758, 1989.

    PubMed  CAS  Google Scholar 

  46. Ghinea, N., A. Fixman, D. Alexandru, D. Popov, M. Hasu, L. Ghitescu, M. Eskenasy, M. Simionescu, and N. Simionescu. Identification of albumin-binding proteins in capillary endothelial cells. J. Cell Biol. 107:231–239, 1988.

    PubMed  CAS  Google Scholar 

  47. Ghinea, N., M. T. V. Hai, M.-T. Groyer-Picard, and E. Milgrom. How protein hormones reach their target cells. Receptor-mediated transcytosis of hCG through endothelial cells. J. Cell Biol. 125:87–97, 1994.

    PubMed  CAS  Google Scholar 

  48. Ghitescu, L. and M. Bendayan. Transendothelial transport of albumin: A quantitative immunocytochemical study. J. Cell Biol. 117:745–755, 1992.

    PubMed  CAS  Google Scholar 

  49. Ghitescu, L., A. Fixman, M. Simionescu, and N. Simionescu. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: Receptor-mediated transcytosis. J. Cell Biol. 102:1304–1311, 1986.

    PubMed  CAS  Google Scholar 

  50. Goldstein, J. L. and M. S. Brown. Binding and degradation of low density lipoproteins by cultured human fibroblasts: Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. Biol. Chem. 249:5153–5162, 1974.

    PubMed  CAS  Google Scholar 

  51. Goldstein, J. L., M. S. Brown, R. G. W. Anderson, D. N. Russel, and W. J. Schneider. Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system. Ann. Rev. Cell Biol. 1:1–39, 1985.

    PubMed  CAS  Google Scholar 

  52. Haberland, M. E., R. R. Rasmussen, C. L. Olch, and A. M. Fogelman. Two distinct receptors account for recognition of maleyl-albumin in human monocytes during differentiation in vitro. J. Clin. Invest. 77:681–689, 1986.

    PubMed  CAS  Google Scholar 

  53. Haraldsson, B. Physiological studies of macromolecular transport across capillary walls. Acta Physiol. Scand. Suppl. 553:1–40, 1986.

    PubMed  CAS  Google Scholar 

  54. Haraldsson, B. and B. Rippe. Serum factors other than albumin are needed for the maintenance of normal capillary permselectivity in rat hindlimb muscle. Acta Physiol. Scand. 123:427–436, 1985.

    PubMed  CAS  Google Scholar 

  55. Haraldsson, B. and B. Rippe. Orosomucoid as one of the serum components contributing to normal permselectivity in rat skeletal muscle. Acta Physiol. Scand. 129:127–135, 1987.

    PubMed  CAS  Google Scholar 

  56. Hasegawa, H., S.-C. Lian, W. E. Finkbeiner, and A. S. Verkman. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am. J. Physiol. 266:C893–C903, 1994.

    PubMed  CAS  Google Scholar 

  57. Hasegawa, H., T. Ma, W. Skach, M. A. Matthay, and A. S. Verkman. Molecular cloning of a mercurial-insensitive water channel expressed in selected watertransporting tissues. J. Biol. Chem. 269:5497–5500, 1994.

    PubMed  CAS  Google Scholar 

  58. He, P. and F. E. Curry. Albumin modulation of capillary permeability—Role of endothelial cell [Ca++]. Am. J. Physiol. 265:H74–H82, 1993.

    PubMed  CAS  Google Scholar 

  59. Hennig, B., D. M. Shasby, A. B. Fulton, and A. A. Spector. Exposure to free fatty acids increases the transfer of albumin across cultured endothelial monolayers. Arteriosclerosis 4:489–497, 1984.

    PubMed  CAS  Google Scholar 

  60. Horiuchi, S., K. Takata, and Y. Morino. Characterization of a membrane-associated receptor from rat sinusoidal liver cell that binds formaldehyde-treated serum albumin. J. Biol. Chem. 260:475–481, 1985.

    PubMed  CAS  Google Scholar 

  61. Hutter, J. F., H. M. Piper, and P. G. Spieckermann. Myocardial fatty acid oxidation: Evidence for an albumin-receptor-mediated transfer of fatty acids. Basic Res. Cardiol. 79:274–282, 1984.

    PubMed  CAS  Google Scholar 

  62. Huxley, V. H. and F. E. Curry. Albumin modulation of capillary permeability: Test of an adsorption mechanism. Am. J. Physiol. 248:H264–H273, 1985.

    PubMed  CAS  Google Scholar 

  63. Huxley, V. H. and F. E. Curry. Differential actions of albumin and plasma on capillary solute permeability. Am. J. Physiol. 260:H1645–H1654, 1991.

    PubMed  CAS  Google Scholar 

  64. Jacobson, B. S., J. E. Schnitzer, and G. E. Palade. Isolation and partial characterization of the luminal plasmalemma of microvascular endothelium from rat lungs. Eur. J. Cell Biol. 58:296–306, 1992.

    PubMed  CAS  Google Scholar 

  65. Jaffe, E. A. Cell biology of endothelial cells. Hum. Pathol. 18:234–239, 1987.

    PubMed  CAS  Google Scholar 

  66. Jeffries, W. A., M. R. Brandon, S. V. Hunt, A. F. Williams, K. C. Gatter, and D. Y. Mason. Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163, 1984.

    Google Scholar 

  67. Johansson, B. R. Size and distribution of endothelial plasmalemmal vesicles in consecutive segments of the microvasculature in cat skeletal muscle. Microvasc. Res. 17:107–117, 1979.

    PubMed  CAS  Google Scholar 

  68. Judd, R. L., M. G. Sarr, and J. M. Miles. Role of albumin in extravascular transport of free fatty acids. FASEB J. 6:A1495, 1992.

    Google Scholar 

  69. Kern, D. F., D. Levitt, and D. Wangensteen. Endothelial albumin permeability measured with a new technique in perfused rabbit lung. Am. J. Physiol. 245:H229–H236, 1983.

    PubMed  CAS  Google Scholar 

  70. King, G. L. and S. M. Johnson. Receptor-mediated transport of insulin across endothelial cells. Science 227:1583–1586, 1985.

    PubMed  CAS  Google Scholar 

  71. Kohn, S., J. Nagy, H. Dvorak, and A. Dvorak. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab. Invest. 67:596, 1992.

    PubMed  CAS  Google Scholar 

  72. Kragh-Hansen, U. Molecular aspects of ligand binding to serum albumin. Pharmacol. Res. 33:17–53, 1981.

    CAS  Google Scholar 

  73. Kramer, R. H. and G. L. Nicolson. Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc. Natl. Acad. Sci. USA 76:5704–5708, 1979.

    PubMed  CAS  Google Scholar 

  74. Kremer, J. M. H., J. Wilting, and L. H. M. Janssen. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacological Reviews 40:1–47, 1988.

    PubMed  CAS  Google Scholar 

  75. Krough, A. and G. A. Harrop. Some observations on stasis and oedema. J. Physiol. 54:125–126, 1921.

    Google Scholar 

  76. Kuchan, M. J., H. Jo, and J. A. Frangos. Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am. J. Physiol. 267:C753–C758, 1994.

    PubMed  CAS  Google Scholar 

  77. Kuno, M. and P. Gardner. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304, 1987.

    PubMed  CAS  Google Scholar 

  78. Landis, E. M. and J. R. Pappenheimer. Exchange of substances through the capillary walls. In: Handbook of Physiology, Sect. 2, Circulation II, Washington, DC: Am. Physiol. Soc., 1963, 961–1034.

    Google Scholar 

  79. Levick, J. R. and C. C. Michel. The effect of bovine albumin on the permeability of frog mesenteric capillaries. Q. J. Exper. Physiol. Cogn. Med. Sci. 58:87–97, 1973.

    CAS  Google Scholar 

  80. Levitt, D. G. Routes of membrane water transport: comparative physiology. In: Water Transport Across Epithelia, edited by H. H. Ussing et al., Copenhagen: Munksgaard, 1981, pp. 248–257.

    Google Scholar 

  81. Liu, J., P. Oh, T. Horner, R. A. Rogers, and J. Schnitzer. Organized endothelial cell surface signal transduction in caveolae distinct from GPI-anchored protein microdomains. J. Biol. Chem. 272:7211–7222, 1997.

    PubMed  CAS  Google Scholar 

  82. Loo, D. D. F., T. Zeuthen, G. Chandy, and E. M. Wright. Cotransport of water by the Na+/Vglucose contransporter. Proc. Natl. Acad. Sc. (USA) 93:13367–13370, 1996.

    CAS  Google Scholar 

  83. Luckhof, A. and D. E. Clapham. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature (Lond.) 355:356–358, 1992.

    Google Scholar 

  84. Macey, R. I. Transport of water and urea in red blood cells. Am. J. Physiol. 246: C195–C203, 1984.

    PubMed  CAS  Google Scholar 

  85. Madri, J. A. and S. K. Williams. Capillary endothelial cell culture: Phenotype modulation by matrix components. J. Cell Biol. 97:153–165, 1983.

    PubMed  CAS  Google Scholar 

  86. Mann, G. E. Alterations of myocardial capillary permeability by albumin in the isolated, perfused rabbit heart. J. Physiol. Lond. 319:311–323, 1981.

    PubMed  CAS  Google Scholar 

  87. McGuire, P. G. and T. A. Twietmeyer. Morphology of rapidly frozen endothelial cells. Gluteraldehyde fixation increases the number of caveolae. Circ. Res. 53:424–429, 1983.

    PubMed  CAS  Google Scholar 

  88. McNamara, P. J., R. C. Jewell, and M. N. Gillespie. The interaction of alpha-1-acid glycoprotein with endogenous autocoids, in particular, platelet activating factor (PAF). In: Progress in Clin, and Biol. Res., Alpha 1 -Acid Glycoprotein: Genetics, Biochemistry, Physiological Functions, and Pharmacology, edited by P. Baumann, C. B. Eap, W. E. Müller, and J.-P. Tillement. New York: Alan R. Liss, Inc., 1989, pp. 307–319.

    Google Scholar 

  89. Merker, M., W. W. Carley, and G. L. Gillis. In situ iodination of angiotensinconverting enzyme and other pulmonary endothelial membrane proteins. Biochem. Pharm. 38:983–992, 1989.

    PubMed  CAS  Google Scholar 

  90. Michel, C. C. Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries. J. Physiol. Lond. 309:341–355, 1980.

    PubMed  CAS  Google Scholar 

  91. Michel, C. C., M. E. Phillips, and M. R. Turner. The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. J. Physiol. Lond. 360:333–346, 1985.

    PubMed  CAS  Google Scholar 

  92. Milici, A. J., M. B. Furie, and W. W. Carley. The formation of fenestrations and channels by capillary endothelium in vitro. Proc. Natl Acad Sci USA 82:6181–6185, 1985.

    PubMed  CAS  Google Scholar 

  93. Milici, A. J. and G. A. Porter. Lectin and immunolabeling of microvascular endothelia. J. Electron Microsc. Tech. 19:305–315, 1991.

    PubMed  CAS  Google Scholar 

  94. Milici, A. J., N. E. Watrous, H. Stukenbrok, and G. E. Palade. Transcytosis of albumin in capillary endothelium. J. Cell Biol. 105:2603–2612, 1987.

    PubMed  CAS  Google Scholar 

  95. Myhre, K. and J. B. Steen. The effect of plasma proteins on the capillary permeability in the rete mirabile of the eel (Anguilla vulgaris L.). Acta Physiol. Scand. 99:98–104, 1977.

    PubMed  CAS  Google Scholar 

  96. Neal, C. R. and C. C. Michel. Transcellular openings through microvascular walls in acutely inflamed frog mesentery. Exper. Physiol. 77:917–920, 1992.

    CAS  Google Scholar 

  97. Nielsen, S., B. L. Smith, E. I. Christensen, and P. Agre. Distribution of the aquaporin CHIP in secretory and resportive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. USA 90:7275–7279, 1993.

    PubMed  CAS  Google Scholar 

  98. Ockner, R. K., R. A. Weisiger, and J. L. Gollan. Hepatic uptake of albumin-bound substances: albumin receptor concept. Am. J. Physiol. 245:G13–G18, 1983.

    PubMed  CAS  Google Scholar 

  99. Palade, G. E. Transport in quanta across the endothelium of blood capillaries. Anat. Rec. 136:254, 1960.

    Google Scholar 

  100. Palade, G. E. The microvascular endothelium revisited. In: Endothelial Cell Biology in Health and Disease, edited by N. Simionescu and M. Simionescu, New York & London: Plenum Press, 1988, pp. 3–22.

    Google Scholar 

  101. Palade, G. E. and R. R. Bruns. Structural modulations of plasmalemmal vesicles. J. Cell Biol. 37:633–649, 1968.

    PubMed  CAS  Google Scholar 

  102. Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration diffusion and molecular seiving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167:13–46, 1951.

    PubMed  CAS  Google Scholar 

  103. Pardridge, W. M., J. Eisenberg, and W. T. Cefalu. Absence of albumin receptor on brain capillaries in vivo or in vitro. Am. J. Physiol. 249:E264–E267, 1985.

    PubMed  CAS  Google Scholar 

  104. Peters, K.-R., C. C. Carley, and G. E. Palade. Endothelial plasmalemmal vesicles have a characteristic stripped bipolar surface structure. J. Cell Biol. 101:2233, 1985.

    PubMed  CAS  Google Scholar 

  105. Peters, T., Jr. Serum albumin. Adv. Prot. Chem. 37:161–245, 1985.

    CAS  Google Scholar 

  106. Pino, R. M. The cell surface of a restrictive fenstrated endothelium I. Distribution of lectin-receptor monosaccharides on the choriocapillaries. Cell Tissue Res. 243:145–155, 1986.

    PubMed  CAS  Google Scholar 

  107. Pino, R. M. and C. L. Thouron. Identification of lectin-receptor monosaccharides on the endothelium of retinal capillaries. Curr. Eye Res. 5:625–628, 1986.

    PubMed  CAS  Google Scholar 

  108. Porter, G. A., G. E. Palade, and A. J. Milici. Differential binding of lectins Griffonia simplicifolia I and Lycopersicon esculentum to microvascular endothelium: organspecific localization and partial glycoprotein characterization. Eur. J. Cell Biol. 51:85–95, 1990.

    PubMed  CAS  Google Scholar 

  109. Powers, M. R., F. A. Blumenstock, J. A. Cooper, and A. B. Malik. Role of albumin arginyl sites in albumin-induced reduction of endothelial hydraulic conductivity. J. Cellular Physiol. 141:558–564, 1989.

    CAS  Google Scholar 

  110. Predescu, D., R. Horvat, S. Predescu, and G. E. Palade. Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N-ethylmaleimide. Proc. Natl. Acad. Sci. USA 91:3014–3018, 1994.

    PubMed  CAS  Google Scholar 

  111. Predescu, D. and G. E. Palade. Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am. J. Physiol. 265:H725–H733, 1993.

    PubMed  CAS  Google Scholar 

  112. Reed, R. G. and C. M. Burrington. The albumin receptor effect may be due to a surface-induced conformational change in albumin. J. Biol. Chem. 264:9867–9872, 1989.

    PubMed  CAS  Google Scholar 

  113. Renkin, E. M. Capillary transport of macromolecules: pores and other pathways. J. Appl. Physiol. 134:375–382, 1985.

    Google Scholar 

  114. Roberts, W. G. and G. E. Palade. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108:2369–2379, 1995.

    PubMed  CAS  Google Scholar 

  115. Rothberg, K. G., J. E. Heuser, W. D. Donzell, Y.-S. Ying, J. R. Glenney, and R. G. W. Anderson. Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682, 1992.

    PubMed  CAS  Google Scholar 

  116. Sage, E. H. and P. Bornstein. Extracellular proteins that modulate cell-matrix interactions. J. Biol. Chem. 266:14831–14834, 1991.

    PubMed  CAS  Google Scholar 

  117. Sage, H., C. Johnson, and P. Bornstein. Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J. Biol. Chem. 259: 3993–4007, 1984.

    PubMed  CAS  Google Scholar 

  118. Schmid, K. Human plasma α 1acid glycoprotein. In: Progress in Clin, and Biol. Res., Alpha 1 -Acid Glycoprotein: Genetics, Biochemistry, Physiological Functions, and Pharmacology, edited by P. Baumann, C. B. Eap, W. E. Müller, and J.-P. Tillement. New York: Alan R. Liss, Inc., 1989, pp. 7–22.

    Google Scholar 

  119. Schneeberger, E. E. and M. Hamelin. Interaction of serum proteins with lung endothelial glycocalyx: Its effect on endothelial permeability. Am. J. Physiol. 247:H206–H217, 1984.

    PubMed  CAS  Google Scholar 

  120. Schneeberger, E. E., L. R. D., and B. A. Neary. Interaction of native and chemically modified albumin with pulmonary microvascular endothelium. Am. J. Physiol. 258:L89–L98, 1990.

    PubMed  CAS  Google Scholar 

  121. Schnitzer, J. E. Analysis of steric partition behavior of molecules in membranes using statistical physics: Application to gel chromatography and electrophoresis. Biophys. J. 54:1065–1076, 1988.

    PubMed  CAS  Google Scholar 

  122. Schnitzer, J. E. Glycocalyx electrostatic potential profile analysis: ion, pH, steric, and charge effects. Yale J. Biol. Med. 61:427–446, 1988.

    PubMed  CAS  Google Scholar 

  123. Schnitzer, J. E. Fiber matrix model re-analysis: Matrix exclusion limits define effective pore radius describing capillary and glomerular permselectivity. Microvasc. Res. 43:342–346, 1992.

    PubMed  CAS  Google Scholar 

  124. Schnitzer, J. E. Gp60 is an albumin binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am. J. Physiol. 31:H246–H254, 1992.

    Google Scholar 

  125. Schnitzer, J. E. Update on the cellular and molecular basis of capillary permeability. Trends in Cardiovasc. Med. 3:124–130, 1993.

    CAS  Google Scholar 

  126. Schnitzer, J. E. Molecular architecture of endothelial caveolae: Possible stresssensing organelles. Annals Biomed. Engineering 23:S34, 1995.

    Google Scholar 

  127. Schnitzer, J. E. and J. Bravo. High affinity binding, endocytosis and degradation of conformationally-modified albumins: Potential role of gp30 and gp18 as novel scavenger receptors. J. Biol. Chem. 268:7562–7570, 1993.

    PubMed  CAS  Google Scholar 

  128. Schnitzer, J. E. and W. W. Carley. Electrostatic and steric partition function of the endothelial glycocalyx. Fed. Proc. 45:1152a, 1986.

    Google Scholar 

  129. Schnitzer, J. E., W. W. Carley, and G. E. Palade. Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc. Natl. Acad. Sci. USA 85:6773–6777, 1988.

    PubMed  CAS  Google Scholar 

  130. Schnitzer, J. E., W. W. Carley, and G. E. Palade. Specific albumin binding to microvascular endothelium in culture. Am. J. Physiol. 254:H425–H437, 1988.

    PubMed  CAS  Google Scholar 

  131. Schnitzer, J. E. and K. Lambrakis. Electrostatic potential and Born energy of charged molecules interacting with phospholipid membranes: Calculation via 3-D numerical solution of the full Poisson equation. J. Theor. Biol. 152:203–222, 1991.

    PubMed  CAS  Google Scholar 

  132. Schnitzer, J. E., J. Liu, and P. Oh. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking and fusion including VAMP, NSF, SNAP, annexins and GTPases. J. Biol. Chem. 210:14399–14404, 1995.

    Google Scholar 

  133. Schnitzer, J. E., D. P. Mcintosh, A. M. Dvorak, J. Liu, and P. Oh. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269: 1435–1439, 1995.

    PubMed  CAS  Google Scholar 

  134. Schnitzer, J. E. and P. Oh. Antibodies to SPARC inhibit albumin binding to SPARC, gp60 and microvascular endothelium. Am. J. Physiol. 263:H1872–H1879, 1992.

    PubMed  CAS  Google Scholar 

  135. Schnitzer, J. E. and P. Oh. Albondin-mediated capillary permeability to albumin: Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J. Biol. Chem. 269:6072–6082, 1994.

    PubMed  CAS  Google Scholar 

  136. Schnitzer, J. E. and P. Oh. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am. J. Physiol. 270: H416–H422, 1996.

    PubMed  CAS  Google Scholar 

  137. Schnitzer, J. E., P. Oh, B. S. Jacobson, and A. M. Dvorak. Caveolae from luminal plasmalemma for rat lung endothelium: Microdomains enriched in caveolin, Ca2+/ ATPase and inositol trisphosphate receptor. Proc. Natl. Acad. Sci. USA 92:1759–1763, 1995.

    PubMed  CAS  Google Scholar 

  138. Schnitzer, J. E., P. Oh, E. Pinney, and A. Allard. Filipin-sensitive caveolae-mediated transport in endothelium: Reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell. Biol. 127:1217–1232, 1994.

    PubMed  CAS  Google Scholar 

  139. Schnitzer, J. E., P. Oh, E. Pinney, and J. Allard. NEM inhibits transcytosis, endocytosis and capillary permeability: Implication of caveolae fusion in endothelia. Am. J. Physiol. 37:H48–H55, 1995.

    Google Scholar 

  140. Schnitzer, J. E. and E. Pinney. Quantitation of specific binding of orosomucoid to cultured microvascular endothelium: Role in capillary permeability. Am. J. Physiol. 263:H48–H55, 1992.

    PubMed  CAS  Google Scholar 

  141. Schnitzer, J. E., C.-P. J. Shen, and G. E. Palade. Lectin analysis of common glycoproteins detected on the surface of continuous microvascular endothelium in situ and in culture: Identification of sialoglycoproteins. Eur. J. Cell Biol. 52:241–251, 1990.

    PubMed  CAS  Google Scholar 

  142. Schnitzer, J. E., A. Siflinger-Birnboim, P. J. Del Vecchio, and A. B. Malik. Segmental differentiation of permeability, protein glycosylation, and morphology of cultured bovine lung vascular endothelium. Biochem. Biophys. Res. Comm. 199:11–19, 1994.

    PubMed  CAS  Google Scholar 

  143. Schnitzer, J. E., A. Sung, R. Horvat, and J. Bravo. Preferential interaction of albumin binding proteins, gp30 and gp18, with modified albumins: Presence in many cells and tissues with a possible role in catabolism. J. Biol. Chem. 264:24544–24553, 1992.

    Google Scholar 

  144. Schnitzer, J. E., J. B. Ulmer, and G. E. Palade. A major endothelial plasmalemmal sialoglycoprotein, gp60, is immunologically related to glycophorin. Proc. Nat. Acad. Sci. USA 87:6843–6847, 1990.

    PubMed  CAS  Google Scholar 

  145. Schnitzer, J. E., J. B. Ulmer, and G. E. Palade. Common peptide epitopes in glycophorin and the endothelial sialoglycoprotein gp60. Biochem. Biophys. Res. Comm. 187:1158–1165, 1992.

    PubMed  CAS  Google Scholar 

  146. Schwartz, C. J. Pathophysiology of the atherogenic process. Am. J. Cardiology 64:23–30, 1989.

    Google Scholar 

  147. Schnitzer, J. E., J. Liu, and P. Oh. Purification of endothelial caveolae reveals the molecular machinery for fusion-dependent, albondin-mediated transcytosis of albumin. Microcirculation 2:93, 1995.

    Google Scholar 

  148. Simionescu, M., N. Ghinea, A. Fixman, M. Lasser, L. Kukes, N. Simionescu, and G. E. Palade. The cerebral microvasculature of the rat: Structure and luminal surface properties during early development. J. Submicrosc. Cytol. Pathol. 20:243–261, 1988.

    PubMed  CAS  Google Scholar 

  149. Simionescu, M., N. Simionescu, and G. E. Palade. Morphometric data on the endothelium of blood capillaries. J. Cell Biol. 60:128–152, 1974.

    PubMed  CAS  Google Scholar 

  150. Simionescu, M., N. Simionescu, and G. E. Palade. Differentiated microdomains on the luminal surface of capillary endothelium: Distribution of lectin receptors. J. Cell Biol. 94:406–413, 1982.

    PubMed  CAS  Google Scholar 

  151. Solomon, A. K., J. A. Dix, M. F. Lukacovic, M. R. Toon, and A. S. Verkman. The aqueous pore in the red cell membrane: Band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann. NY Acad. Sci. 414:97–124, 1983.

    PubMed  CAS  Google Scholar 

  152. Sparrow, C. P., S. Parthasarathy, and D. Steinberg. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J. Biol. Chem. 264:2599–2604, 1989.

    PubMed  CAS  Google Scholar 

  153. Starling, E. H. On the absorption of fluids from the connective tissue spaces. J. Physiol. (London) 19:312–326, 1896.

    CAS  Google Scholar 

  154. Steinberg, D., S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum. Beyond cholesterol; modification of low-density lipoprotein that increase its atherogenicity. New Engl. J. Med. 320:915–924, 1989.

    PubMed  CAS  Google Scholar 

  155. Sung, A., V. Rizzo, P. Oh, and J. E. Schnitzer. Rapid mechanotransduction occurs in situ at the endothelial cell surface primarily in caveolae. Mol. Biol. Cell 7:276a, 1996.

    Google Scholar 

  156. Suzuki, S. and H. Sugi. Evidence for extracellular localization of activator calcium in dog coronary artery smooth muscle as studies by the pyroantimonate method. Cell Tissue Res. 257:237–246, 1989.

    PubMed  CAS  Google Scholar 

  157. Tavassoli, M., T. Kishimoto, and M. Kataoka. Liver endothelium mediates the hepatocyte’s uptake of ceruloplasmin. J. Cell Biol. 102:1298–1303, 1986.

    PubMed  CAS  Google Scholar 

  158. Taylor, A. E. and D. N. Granger. Exchange of macromolecules across the microcirculation. In: Handbook of Physiology, edited by E. M. Renkin and C. C. Michel, Bethesda, MD: Am. Physiol. Soc., 1984, pp. 467–520.

    Google Scholar 

  159. Tiruppathi, C., A. Finnegan, and A. B. Malik. Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc. Natl. Acad. Sci. USA 93:250–254, 1996.

    PubMed  CAS  Google Scholar 

  160. van Os, C. H., P. M. T. Deen, and J. A. Dempster. Aquaporins: Water selective channels in biological membranes. Molecular structure and tissue distribution. Biochim. et Biophys. Acta 1197:291–309, 1994.

    Google Scholar 

  161. Vasile, E., M. Simionescu, and N. Simionescu. Visualization of binding, endocytosis, and transcytosis of low-density lipoprotein in arterial endothelium in situ. J. Cell Biol. 96:1677–1689, 1983.

    PubMed  CAS  Google Scholar 

  162. Verkman, A. S. Mechanisms and regulation of water permeability in renal epithelia. Am. Physiol. 257:C837–C850, 1989.

    CAS  Google Scholar 

  163. Villaschi, S., L. Johns, M. Cirigliano, and G. G. Pietra. Binding and uptake of native and glycosylated albumin-gold complexes in perfused rat lungs. Microvasc. Res. 32:190–199, 1986.

    PubMed  CAS  Google Scholar 

  164. Vorbrodt, A. W., A. S. Lossinsky, D. H. Dobrogowska, and H. M. Wisniewski. Distribution of anionic sites and glycoconjugates on the endothelial surfaces of the developing blood-brain barrier. Dev. Brain Res. 29:69–79, 1986.

    CAS  Google Scholar 

  165. Wagner, R. C. and S. B. Andrews. Ultrastructure of the vesicular system in rapidly frozen capillary endothelium of the rete mirabile. J. Ultrastructure Res. 90:172–182, 1985.

    Google Scholar 

  166. Wagner, R. C., C. S. Robinson, P. J. Cross, and J. J. Devenney. Endocytosis and exocytosis of transferrin by isolated capillary endothelium. Microvasc. Res. 25:387–396, 1983.

    PubMed  CAS  Google Scholar 

  167. Wagner, R. C. and C. S.-C. Transcapillary transport of solute by the endothelial vesicular system: Evidence from thin serial section analysis. Microvasc. Res. 42:139–150, 1991.

    PubMed  CAS  Google Scholar 

  168. Weisiger, R. A., J. L. Gollan, and R. K. Ockner. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science 211:1048–1051, 1981.

    PubMed  CAS  Google Scholar 

  169. Yokota, S. Immunocytochemical evidence for transendothelial transport of albumin and fibrinogen in rat heart and diaphragm. Biomed. Res. 4:577–586, 1983.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Schnitzer, J.E. (1998). Transport Functions of the Glycocalyx, Specific Proteins, and Caveolae in Endothelium. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics