Skip to main content

Impact of Extracellular and Intracellular Diffusion on Hepatic Uptake Kinetics

  • Chapter
Whole Organ Approaches to Cellular Metabolism

Abstract

The selective transport of small molecules is among the most fundamental functions of living cells. Selectivity is largely due to the plasma membrane, which contains carrier proteins that increase the permeability of many molecules. However, not all molecules require carriers. Molecules that are sufficiently hydrophobic can easily dissolve in the membrane core, but have much greater difficulty crossing the aqueous layers on either side of the plasma membrane (Figure 16.1). For many such molecules, transport across these intra- and extracellular water layers may limit the uptake rate under physiologic circumstances. In response to this limitation, organisms have evolved aqueous carrier systems (the soluble binding proteins) that catalyze the transport of poorly soluble molecules across these water layers. This chapter will discuss these transport processes and how soluble carrier systems may influence the observed uptake kinetics. It shall be argued that plasma and cytosolic binding proteins represent true carrier systems, producing all of the features of carrier-mediated kinetics. Failure to consider these carrier systems can lead to misinterpretation of uptake data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. Kinesin family in murine central nervous system. J. Cell. Biol. 119:1287–1296, 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Al-Baldawi, N.F. and R.F. Abercrombie. Cytoplasmic hydrogen ion diffusion coefficient. Biophys. J. 61:1470–1479, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Amaratunga, A., S.E. Leeman, K.S. Kosik, and R.E. Fine. Inhibition of kinesin synthesis in vivo inhibits the rapid transport of representative proteins for three transport vesicle classes into the axon. J. Neurochem. 64:2374–2376, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Andersen, O. and M. Fuchs. Potential energy barriers to ion transport within lipid bilayers: Studies with tetraphenylborate. Biophys. J. 15:795–830, 1975.

    Article  PubMed  CAS  Google Scholar 

  5. Aoyama, N., T. Ohya, K. Chandler, S. Gresky, and R.T. Holzbach. Transcellular transport of organic anions in the isolated perfused rat liver: The differential effects of monensin and colchicine. Hepatology 14:1–9, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Aoyama, N., H. Tokumo, T. Ohya, K. Chandler, and R.T. Holzbach. A novel transcellular transport pathway for non-bile salt cholephilic organic anions. Am. J. Physiol. 261:G305–G311, 1991.

    PubMed  CAS  Google Scholar 

  7. Atri, A., J. Amundson, D. Clapham, and J. Sneyd. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 65:1727–1739, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Baker, K.J. and S.E. Bradley. Binding of sulfobromophthalein (BSP) sodium by plasma albumin. Its role in hepatic BSP extraction. J. Clin. Invest. 45:281–287, 1966.

    Article  PubMed  CAS  Google Scholar 

  9. Barlow, J.W., L.E. Raggatt, C.F. Lim, D.J. Topliss, and J.R. Stockigt. Characterization of cytoplasmic T3 binding sites by adsorption to hydroxyapatite: Effects of drug inhibitors of T3 and relationship to glutathione-S-transferases. Thyroid 2:39–44, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Barry, P.H. and J.M. Diamond. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64:763–872, 1984.

    PubMed  CAS  Google Scholar 

  11. Bass, L. and S.M. Pond. The puzzle of rates of cellular uptake of protein-bound ligands. In: Pharmacokinetics: Mathematical and Statistical Approaches to Metabolism and Distribution of Chemicals and Drugs, edited by A. Pecile and A. Rescigno. London: Plenum Press, 1988, pp. 241–265.

    Google Scholar 

  12. Bass, N.M. Cellular binding proteins for fatty acids and retinoids: Similar or specialized functions? Mol. Cell. Biochem. 123:191–202, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Bass, N.M., R.M. Kaikaus, and R.K. Ockner. Physiology and molecular biology of hepatic cytosolic fatty acid-binding protein. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 421–446.

    Google Scholar 

  14. Bassingthwaighte, J.B., L. Noodleman, G.J. Van der Vusse, and J.F. Glatz. Modeling of palmitate transport in the heart. Mol. Cell. Biochem. 88:51–58, 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Bassingthwaighte, J.B., C.Y. Wang, and I.S. Chan. Blood-tissue exchange via transport and transformation by capillary endothelial cells. Circ. Res. 65:997–1020, 1989.

    PubMed  CAS  Google Scholar 

  16. Benz, R., P. Lauger, and K. Janko. Transport kinetics of hydrophobic ions in lipid bilayer membranes: Charge-pulse relaxation studies. Biochem. Biophys. Acta. 455:701–720, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Billheimer, J.T. and J.L. Gaylor. Effect of lipid composition on the transfer of sterols mediated by non-specific lipid transfer protein (sterol carrier protein2). Biochem. Biophys. Acta Lipid. Metab. 1046:136–143, 1990.

    Article  CAS  Google Scholar 

  18. Blatter, L.A. and W.G. Wier. Intracellular diffusion, binding, and compartmentalization of the fluorescent calcium indicators indo-1 and fura-2. Biophys. J. 58:1491–1499, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Brodersen, R. Bilirubin. Solubility and interaction with albumin and phospholipid. J. Biol. Chem. 254:2364–2369, 1979.

    PubMed  CAS  Google Scholar 

  20. Brodersen, R. Binding of bilirubin to albumin. CRC Crit. Rev. Clin. Lab. Sci. 11:305–399, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Brodersen, R. and J. Theilgaard. Bilirubin colloid formation in neutral aqueous solution. Scand. J. Clin, Lab. Invest. 24:395–398, 1969.

    Article  CAS  Google Scholar 

  22. Brodersen, R., H. Vorum, E. Skriver, and A.O. Pedersen. Serum albumin binding of palmitate and stearate. Multiple binding theory for insoluble ligands. Eur. J. Biochem. 182:19–25, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Bronner, F. Intestinal calcium transport: the cellular pathway. Miner Electrolyte Metab. 16:94–100, 1990.

    PubMed  CAS  Google Scholar 

  24. Bronner, F., D. Pansu, and W.D. Stein. An analysis of intestinal calcium transport across the rat intestine. Am. J. Physiol. 250:G561–G569, 1986.

    PubMed  CAS  Google Scholar 

  25. Catalá, A. Interaction of fatty acids, acyl-CoA derivatives and retinoids with microsomal membranes: Effect of cytosolic proteins. Mol. Cell. Biochem. 120:89–94, 1993.

    Article  PubMed  Google Scholar 

  26. Chary, S.R. and R.K. Jain. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. USA 86:5385–5389, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Cheng, K.H. Quantitation of non-Einstein diffusion behavior of water in biological tissues by proton MR diffusion imaging: Synthetic image calculations. Magn. Reson. Imaging 11:569–583, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Claret, M. and J.L. Mazet. Ionic fluxes and permeabilities of cell membranes in rat liver. J. Physiol. (Lond). 223:279–295, 1972.

    CAS  Google Scholar 

  29. Clegg, J.S. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am. J. Physiol. 246:R133–R151, 1984.

    PubMed  CAS  Google Scholar 

  30. Cooper, R., N. Noy, and D. Zakim. A physical-chemical model for cellular uptake of fatty acids: prediction of intracellular pool sizes. Biochemistry 26:5890–5896, 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Crank, J. The Mathematics of Diffusion, 2nd ed. New York: Oxford University Press, 1989, pp. 326–337.

    Google Scholar 

  32. Crawford, J.M. and J.L. Gollan. Transcellular transport of organic anions in hepatocytes: Still a long way to go. Hepatology 14:192–197, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Crawford, J.M. and J.L. Gollan. Hepatocellular transport of bilirubin: The role of membranes and microtubules. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 447–466.

    Google Scholar 

  34. Cyr, J.L. and S.T. Brady. Molecular motors in axonal transport. Cellular and molecular biology of kinesin. Mol. Neurohiol. 6:137–155, 1992.

    Article  CAS  Google Scholar 

  35. Daniels, C., N. Noy, and D. Zakim. Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochemistry 24:3286–3292, 1985.

    Article  PubMed  CAS  Google Scholar 

  36. Dwyer, J.D. and V.A. Bloomfield. Brownian dynamics simulations of probe and selfdiffusion in concentrated protein and DNA solutions. Biophys. J. 65:1810–1816, 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Endow, S.A. The emerging kinesin family of microtubule motor proteins. Trends Biochem. Sci. 16:221–225, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Erlinger, S. Role of intracellular organelles in the hepatic transport of bile acids. Biomed. Pharmacother. 44:409–416, 1990.

    Article  PubMed  CAS  Google Scholar 

  39. Erlinger, S. Intracellular events in bile acid transport by the liver. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 467–476.

    Google Scholar 

  40. Feher, J.J., C.S. Fullmer, and R.H. Wasserman. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am. J. Physiol. 262:C517–C526, 1992.

    PubMed  CAS  Google Scholar 

  41. Fulton, A. How crowded is the cytoplasm? Cell 30:375–378, 1985.

    Google Scholar 

  42. Gaigalas, A.K., J.B. Hubbard, M. McCurley, and S. Woo. Diffusion of bovine serum albumin in aqueous solutions. J. Phys. Chem. 96:2355–2359, 1992.

    Article  CAS  Google Scholar 

  43. Gershon, N.D., K.R. Porter, and B.L. Trus. The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it. Proc. Natl. Acad. Sci. USA 82:5030–5034, 1985.

    Article  PubMed  CAS  Google Scholar 

  44. Glatz, J.F. and G.J. Van der Vusse. Intracellular transport of lipids. Mol. Cell. Biochem. 88:37–44, 1989.

    Article  PubMed  CAS  Google Scholar 

  45. Glatz, J.F.C. and G.J. Van der Vusse. Cellular fatty acid-binding proteins: Current concepts and future directions. Mol. Cell. Biochem. 98:237–251, 1990.

    PubMed  CAS  Google Scholar 

  46. Goresky, C.A. Uptake in the liver: The nature of the process. Can. J. Physiol. Pharmacol. 21:65–101, 1980.

    CAS  Google Scholar 

  47. Goresky, C.A., W. Stremmel, C.P. Rose, S. Guirguis, A.J. Schwab, H.E. Diede, and E. Ibrihim. The capillary transport system for free fatty acids in the heart. Circ. Res. 74:1015–1026, 1994.

    PubMed  CAS  Google Scholar 

  48. Groebe, K. and G. Thews. Role of geometry and anisotropic diffusion for modeling PO2 profiles in working red muscle. Respir. Physiol. 79:255–278, 1990.

    Article  PubMed  CAS  Google Scholar 

  49. Groebe, K. and G. Thews. Calculated intra-and extracellular PO2 gradients in heavily working red muscle. Am. J. Physiol. 259:H84–H92, 1990.

    PubMed  CAS  Google Scholar 

  50. Groebe, K. and G. Thews. Basic mechanisms of diffusive and diffusion-related oxygen transport in biological systems: A review. Adv. Exp. Med. Biol. 317:21–33, 1992.

    PubMed  CAS  Google Scholar 

  51. Hayakawa, T., O. Cheng, A. Ma, and J.L. Boyer. Taurocholate stimulates transcytotic vesicular pathways labeled by horseradish peroxidase in the isolated perfused rat liver. Gastroenterology 99:216–228, 1990.

    PubMed  CAS  Google Scholar 

  52. Hebert, S.C., J.A. Schafer, and T.E. Andreoli. The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron. J. Membr. Biol. 58:1–19, 1981.

    Article  PubMed  CAS  Google Scholar 

  53. Luxon, B.A., D.C. Holly, M.T. Milliano, and R.A. Weisiger. Sex differences in membrane and intracellular hepatic transport of palmitate support a balanced uptake mechanism. Am. J. Physiol. (in press), 1998.

    Google Scholar 

  54. Hou, L., F. Lanni, and K. Luby-Phelps. Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm. Biophys. J. 58:31–43, 1990.

    Article  PubMed  CAS  Google Scholar 

  55. Huet, P.M., C.A. Goresky, J.P. Villeneuve, D. Marleau, and J.O. Lough. Assessment of liver microcirculation in human cirrhosis. J. Clin. Invest. 70:1234–1244, 1982.

    Article  PubMed  CAS  Google Scholar 

  56. Häussinger, D., N. Saha, C. Hallbrucker, F. Lang, and W. Gerok. Involvement of microtubules in the swelling-induced stimulation of transcellular taurocholate transport in perfused rat liver. Biochem. J. 291:355–360, 1993.

    PubMed  Google Scholar 

  57. Irving, M., J. Maylie, N.L. Sizto, and W.K. Chandler. Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle. Biophys. J. 57:717–721, 1990.

    Article  PubMed  CAS  Google Scholar 

  58. Jacobson, K., Z. Derzko, E.S. Wu, Y. Hou, and G. Poste. Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J. Supramol. Struct. 5:565–576, 1976.

    Article  PubMed  Google Scholar 

  59. Jacobson, K. and J. Wojcieszyn. The translational mobility of substances within the cytoplasmic matrix. Proc. Natl. Acad. Sci. USA 81:6747–6751, 1984.

    Article  PubMed  CAS  Google Scholar 

  60. Jacobson, K. and J. Wojcieszyn. The translational mobility of substances within the cytoplasmic matrix. Proc. Natl Acad. Sci. USA 81:6747–6751, 1984.

    Article  PubMed  CAS  Google Scholar 

  61. Jans, D.A., R. Peters, P. Jans, and F. Fahrenholz. Vasopressin V2-receptor mobile fraction and ligand-dependent adenylate cyclase activity are directly correlated in LLC-PK1 renal epithelial cells. J. Cell. Biol. 114:53–60, 1991.

    Article  PubMed  CAS  Google Scholar 

  62. Jones, D.P., T.Y. Aw, and A.H. Sillau. Defining the resistance to oxygen transfer in tissue hypoxia. Experientia 46:1180–1185, 1990.

    Article  PubMed  CAS  Google Scholar 

  63. Jürgens, K.D., T. Peters, and G. Gros. A method to measure the diffusion coefficient of myoglobin in intact skeletal muscle cells. Adv. Exp. Med. Biol. 277:137–143, 1990.

    PubMed  Google Scholar 

  64. Kao, H.P, J.R. Abney, and A.S. Verkman. Determinants of the translational mobility of a small solute in cell cytoplasm. J. Cell. Biol. 120:175–184, 1993.

    Article  PubMed  CAS  Google Scholar 

  65. Kaplowitz, N. Physiological significance of glutathione S-transferases. Am. J. Physiol. 239:G439–G444, 1980.

    PubMed  CAS  Google Scholar 

  66. Keiding, S., P. Ott, and L. Bass. Enhancement of unbound clearance of ICG by plasma proteins, demonstrated in human subjects and interpreted without assumption of facilitating structures. J. Hepatol. 19:327–344, 1993.

    Article  PubMed  CAS  Google Scholar 

  67. Kimmich, R., T. Gneiting, K. Kotitschke, and G. Schnur. Fluctuations, exchange processes, and water diffusion in aqueous protein systems. A study of bovine serum albumin by diverse NMR techniques. Biophys. J. 58:1183–1197, 1990.

    Article  PubMed  CAS  Google Scholar 

  68. Kolega, J. and D.L. Taylor. Gradients in the concentration and assembly of myosin II in living fibroblasts during locomotion and fiber transport. Mol. Biol. Cell. 4:819–836, 1993.

    PubMed  CAS  Google Scholar 

  69. Kragh-Hansen, U. Structure and ligand binding properties of human serum albumin. Dan. Med. J. 37:57–84, 1990.

    CAS  Google Scholar 

  70. Kuchel, P.W. and B.E. Chapman. Translational diffusion of hemoglobin in human erythrocytes and hemolysates. J. Magn. Reson. 94:574–580, 1991.

    CAS  Google Scholar 

  71. Kuwahara, M., L.B. Shi, F. Marumo, and A.S. Verkman. Transcellular water flow modulates water channel exocytosis and endocytosis in kidney collecting tubule. J. Clin. Invest. 88:423–429, 1991.

    Article  PubMed  CAS  Google Scholar 

  72. Lake, J.R., V. Licko, R.W. Van Dyke, and B.F. Scharschmidt. Biliary secretion of fluid-phase markers by the isolated perfused rat liver. Role of transcellular vesicular transport. J. Clin. Invest. 76:676–684, 1985.

    Article  PubMed  CAS  Google Scholar 

  73. Latour, L.L., K. Svoboda, P.P. Mitra, and C.H. Sotak. Time-dependent diffusion of water in a biological model system. Proc. Natl. Acad. Sci. USA 91:1229–1233, 1994.

    Article  PubMed  CAS  Google Scholar 

  74. Lenzen, R., F. Tarseti, R. Salvi, E. Schuler, R. Dembitzer, and N. Tavoloni. Physiology of canalicular bile formation. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 539–552.

    Google Scholar 

  75. LeSage, G.D., W.E. Robertson, J.L. Phinizy, and A. Dominquez. Cytoplasmic and membrane-based diffusion of organic anions in hepatocyte couplets and isolated endoplasmic reticulum vesicles. Gastroenterology 102:A841 (abstract), 1992.

    Google Scholar 

  76. Lichter, M., G. Fleischner, R. Kirsch, J. Levi, K. Kamisaka, and I.M. Arias. Ligandin and Z protein in binding of thyroid hormones by the liver. Am. J. Physiol. 230:113–1155, 1976.

    Google Scholar 

  77. Liem, H.H., J.A. Grasso, S.H. Vincent, and U. Muller Eberhard. Protein-mediated efflux of heme from isolated rat liver mitochondria. Biochem. Biophys. Res. Commun. 167:528–534, 1990.

    Article  PubMed  CAS  Google Scholar 

  78. Liscum, L. and N.K. Dahl. Intracellular cholesterol transport. J. Lipid. Res. 33:1239–1254, 1992.

    PubMed  CAS  Google Scholar 

  79. Longsworth, L. Temperature dependence of diffusion in aqueous solutions. J. Phys. Chem. 58:770–773, 1954.

    Article  CAS  Google Scholar 

  80. Luby-Phelps, K., P.E. Castle, D.L. Taylor, and F. Lanni. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 84:4910–4913, 1987.

    Article  PubMed  CAS  Google Scholar 

  81. Luby-Phelps, K., F. Lanni, and D.L. Taylor. The submicroscopic properties of cytoplasm as a determinant of cellular function. Ann. Rev. Biophys. Biophys. Chem. 17:369–396, 1988.

    Article  CAS  Google Scholar 

  82. Luby-Phelps, K., S. Mujumdar, R.B. Mujumdar, L.A. Ernst, W. Galbraith, and A.S. Waggoner. A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys. J. 65:236–242, 1993.

    Article  PubMed  CAS  Google Scholar 

  83. Luby-Phelps, K. and D.L. Taylor. Subcellular compartmentalization by local differentiation of cytoplasmic structure. Cell. Motil. Cytoskel. 10:28–37, 1988.

    Article  CAS  Google Scholar 

  84. Luby-Phelps, K. and R.A. Weisiger. Role of cytoarchitecture in cytoplasmic transport. Comp. Biochem. Physiol. 115B:295–306, 1996.

    CAS  Google Scholar 

  85. Luxon, B.A. Inhibition of binding to fatty acid binding protein reduces the intracellular transport of a fatty acid analog: Further evidence for a transport function for FABP. Gastroenterology 104:A936 (abstract), 1993.

    Google Scholar 

  86. Luxon, B.A., R.R. Cavalieri, and R.A. Weisiger. A new method for measuring cytoplasmic transport: Application to 3,5,3′-triiodothyronine (T3). Clin. Res. 39:460A (abstract), 1991.

    Google Scholar 

  87. Luxon, B.A. and R.A. Weisiger. Cytoplasmic transport: A potentially rate-limiting step in the hepatic utilization of fatty acids. Hepatology 14:255A (abstract), 1991.

    Google Scholar 

  88. Luxon, B.A. and R.A. Weisiger. Sex differences in cytoplasmic transport of a fatty acid analog: Evidence for a transport function for fatty acid binding protein (FABP). Hepatology 16:144A (abstract), 1992.

    Google Scholar 

  89. Luxon, B.A. and R.A. Weisiger. A new method for measuring cytoplasmic transport: Application to 3,5,3′-triiodothyronine (T3). Am. J. Physiol. 263:G733–G741, 1992.

    PubMed  CAS  Google Scholar 

  90. Luxon, B.A. and R.A. Weisiger. Sex differences in intracellular fatty acid transport: Role of cytoplasmic binding proteins. Am. J. Physiol. 265:G831–G841, 1993.

    PubMed  CAS  Google Scholar 

  91. Luxon, B.A. and R.A. Weisiger. Extending the multiple indicator dilution method to include slow cytoplasmic diffusion. Math. Biosci. 113:211–230, 1993.

    Article  PubMed  CAS  Google Scholar 

  92. Marks, D.L., N.F. LaRusso, and M.A. McNiven. Isolation of the microtubule-vesicle motor kinesin from rat liver: Selective inhibition by cholestatic bile acids. Gastroenterology 108:824–833, 1995.

    Article  PubMed  CAS  Google Scholar 

  93. Mastro, A.M., M.A. Babich, W.D. Taylor, and A.D. Keith. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc. Natl. Acad. Sci. USA 81:3414–3418, 1984.

    Article  PubMed  CAS  Google Scholar 

  94. Matarese, V., R.L. Stone, D.W. Waggoner, and D.A. Bernlohr. Intracellular fatty acid trafficking and the role of cytosolic lipid binding proteins. Prog. Lipid. Res. 28:245–272, 1990.

    Article  Google Scholar 

  95. McGinnis, W. and M. Kuziora. The molecular architects of body design. Sci. Am. 270:58–61, 64–66, 1994.

    Article  PubMed  CAS  Google Scholar 

  96. Meijer, D.K.F. and G.M.M. Groothuis. Hepatic transport of drugs and proteins. In: Oxford Textbook of Clinical Hepatology, edited by N. McIntyre, J.P. Benhamou, J. Bircher, M. Rizzetto, and J. Rodes. New York: Oxford University Press, 1991, pp. 40–78.

    Google Scholar 

  97. Mendel, C.M., R.A. Weisiger, A.L. Jones, and R.R. Cavalieri. Thyroid hormone-binding proteins in plasma facilitate uniform distribution of thyroxine within tissues: A perfused rat liver study. Endocrinology 120:1742–1749, 1987.

    Article  PubMed  CAS  Google Scholar 

  98. Meuwissen, J.A.T.P. and K.P.M. Heirwegh. Binding proteins in plasma and liver cytosol, and transport of bilirubin. In Transport by Proteins, edited by G. Blauer and H. Sund. New York: W. de Gruyter, 1978, pp. 387–403.

    Google Scholar 

  99. Meuwissen, J.A.T.P. and K.P.M. Heirwegh. Aspects of bilirubin transport. In: Bilirubin, Volume II, edited by K.P.M. Heirwegh and S.B. Brown. Boca Raton, FL: CRC Press, 1982, pp. 39–83.

    Google Scholar 

  100. Meuwissen, J.A.T.P., B. Ketterer, and K.P.M. Heirwegh. Role of soluble binding proteins in overall hepatic transport of bilirubin. In Chemistry and Physiology of Bile Pigments, edited by P. Berk and N. Berlin. Bethesda, MD: National Institutes of Health, 1977, pp. 323–337.

    Google Scholar 

  101. Morre, D.J., W.D. Merritt, and C.A. Lembi. Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73:43–49, 1971.

    Article  PubMed  CAS  Google Scholar 

  102. Murkerjee, P. Dimerization of anions of long-chain fatty acids in aqueous solutions and the hydrophobic properties of the acids. J. Phys. Chem. 69:2821–2827, 1965.

    Article  Google Scholar 

  103. Nathanson, M.H. Cellular and subcellular calcium signaling in gastrointestinal epithelium. Gastroenterology 106:1349–1364, 1994.

    PubMed  CAS  Google Scholar 

  104. Nathanson, M.H., M.S. Moyer, A.D. Burgstahler, A.M. O’Carroll, M.J. Brownstein, and S.J. Lolait. Mechanisms of subcellular cytosolic Ca2+ signaling evoked by stimulation of the vasopressin Vla receptor. J. Biol. Chem. 267:23282–23289, 1992.

    PubMed  CAS  Google Scholar 

  105. Noy, N. and Z.-J. Xu. Interactions of retinol with binding proteins: Implications for the mechanism of uptake by cells. Biochemistry 29:3878–3883, 1990.

    Article  PubMed  CAS  Google Scholar 

  106. Noy, N. and D. Zakim. Physical chemical basis for the uptake of organic compounds by cells. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 313–336.

    Google Scholar 

  107. Ockner, R.K., D.A. Burnett, N. Lysenko, and J.A. Manning. Sex differences in long chain fatty acid utilization and fatty acid binding protein concentration in rat liver. J. Clin. Invest. 64:172–181, 1979.

    Article  PubMed  CAS  Google Scholar 

  108. Ott, P., S. Keiding, and L. Bass. Intrinsic hepatic clearance of indocyanine green in the pig: Dependence on plasma protein concentration. Eur. J. Clin. Invest. 22:347–357, 1992.

    Article  PubMed  CAS  Google Scholar 

  109. Ott, P., S. Keiding, A.H. Johnsen, and L. Bass. Hepatic removal of two fractions of indocyanine green after bolus injection in anesthetized pigs. Am. J. Physiol. Gastrointest. Liver. Physiol. 266:G1108–G1122, 1994.

    CAS  Google Scholar 

  110. Periasamy, N., H.P Kao, K. Fushimi, and A.S. Verkman. Organic osmolytes increase cytoplasmic viscosity in kidney cells. Am. J. Physiol. Cell Physiol. 263: C901–C907, 1992.

    CAS  Google Scholar 

  111. Peters, R. Nucleo-cytoplasmic flux and intracellular mobility in single hepatocytes measured by fluorescence microphotolysis. EMBO J. 3:1831–1836, 1984.

    PubMed  CAS  Google Scholar 

  112. Peters, T., Jr. Serum albumin. Adv. Prot. Chem. 37:161–245, 1985.

    Article  CAS  Google Scholar 

  113. Phillips, M.C., W.J. Johnson, and G.H. Rothblat. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim. Biophys. Acta 906:223–276, 1987.

    PubMed  CAS  Google Scholar 

  114. Pond, S.M., C.K.C. Davis, M.A. Bogoyevitch, R.A. Gordon, R.A. Weisiger, and L. Bass. Uptake of palmitate by hepatocyte suspensions: Facilitation by albumin? Am. J. Physiol. 262:G883–G894, 1992.

    CAS  Google Scholar 

  115. Pond, S.M., R.A. Gordon, Z.-Y. Wu, R.A. Weisiger, and L. Bass. Effects of gender and pregnancy on hepatocellular uptake of palmitic acid: Facilitation by albumin. Am. J. Physiol. Gastromtest. Liver. Physiol. 267:G656–G662, 1994.

    CAS  Google Scholar 

  116. Potter, B.J. and P.D. Berk. Liver plasma membrane fatty acid binding protein. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 253–268.

    Google Scholar 

  117. Reichen, J., B. Egger, N. Ohara, T.B. Zeltner, T. Zysset, and A. Zimmermann. Determinants of hepatic function in liver cirrhosis in the rat Multivariate analysis. J. Clin. Invest. 82:2069–2076, 1988.

    Article  PubMed  CAS  Google Scholar 

  118. Rivory, L.P. Probing hepatic structure and function with the multiple indicator dilution technique. Ph.D. Thesis. University of Queensland, St. Lucia, Australia, 1991.

    Google Scholar 

  119. Rivory, L.P., M.S. Roberts, and S.M. Pond. Axial tissue diffusion can account for the disparity between current models of hepatic elimination for lipophilic drugs. J. Pharmacokinei. Biopharm. 20:19–61, 1992.

    Article  CAS  Google Scholar 

  120. Roda, A., A. Minutello, M.A. Angellotti, and A. Fini. Bile acid structure-activity relationship: Evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC J. Lipid Res. 31:1433–1443, 1990.

    PubMed  CAS  Google Scholar 

  121. Rojkind, M. Extracellular matrix. In: The Liver: Biology and Pathobiology, 2nd ed., edited by I.M. Arias, W.B. Jakoby, H. Popper, D. Schachter, and D.A. Shafritz. New York: Raven Press, 1988, pp. 707–716.

    Google Scholar 

  122. Rorschach, H.E., C. Lin, and C.F. Hazlewood. Diffusion of water in biological tissues. Scanning Micros. 5:S1–S10, 1991.

    CAS  Google Scholar 

  123. Rosner, W. Plasma steroid-binding proteins. Endocrinol. Metabol. Clin. North Am. 20:697–720, 1991.

    CAS  Google Scholar 

  124. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372:55–63, 1994.

    Article  PubMed  CAS  Google Scholar 

  125. Ruifrok, P.G. and D.K. Meijer. Sodium ion-coupled uptake of taurocholate by ratliver plasma membrane vesicles. Liver 2:28–34, 1982.

    PubMed  CAS  Google Scholar 

  126. Scallen, T.J., A. Pastuszyn, B.J. Noland, R. Chanderbhan, A. Kharroubi, and G.V. Vahouny. Sterol carrier and lipid transfer proteins. Chem. Phys. Lipids 38:239–261, 1985.

    Article  PubMed  CAS  Google Scholar 

  127. Scharschmidt, B.F., J.R. Lake, E.L. Renner, V. Licko, and R.W. Van Dyke. Fluid phase endocytosis by cultured rat hepatocytes and perfused rat liver: Implications for plasma membrane turnover and vesicular trafficking of fluid phase markers. Proc. Natl. Acad. Sci. USA 83:9488–9492, 1986.

    Article  PubMed  CAS  Google Scholar 

  128. Schwab, A.J. and C.A. Goresky. Hepatic uptake of protein-bound ligands: Effect of an unstirred Disse space. Am. J. Physiol. 270:G869–G880, 1996.

    PubMed  CAS  Google Scholar 

  129. Scow, R.O., E.J. Blanchette-Mackie, M.G. Wetzel, and A. Reinila. Lipid transport in tissue by lateral movement in cell membranes. In: The Adipocyte and Obesity: Cellular and Molecular Mechanisms, edited by A. Angel and C.H. Hollenberg. New York: Raven Press, 1983, pp. 165–169.

    Google Scholar 

  130. Shah, J.C. Analysis of permeation data: Evaluation of the lag time method. Int. J. Pharm. 90:161–169, 1993.

    Article  CAS  Google Scholar 

  131. Simion, F.R., B. Fleischer, and S. Fleischer. Two distinct mechanisms for taurocholate uptake in subcellular fractions from rat liver. J. Biol. Chem. 259:10814–10822, 1984.

    PubMed  CAS  Google Scholar 

  132. Sleight, R.G. Intracellular lipid transport in eukaryotes. Ann. Rev. Physiol. 49:193–208, 1987.

    Article  CAS  Google Scholar 

  133. Smith, A. and W.T. Morgan. Hemopexin-mediated heme transport to the liver. Evidence for a heme-binding protein in liver plasma membranes. J. Biol. Chem. 260:8325–8329, 1985.

    PubMed  CAS  Google Scholar 

  134. Spener, F., T. Borchers, and M. Mukherjea. On the role of fatty acid binding proteins in fatty acid transport and metabolism. FEBS. Lett. 244:1–5, 1989.

    Article  PubMed  CAS  Google Scholar 

  135. Stein, W.D. Concepts of mediated transport. In: Membrane Transport, edited by S.L. Bonting and J.J. de Pont. Amsterdam: Elsevier Press, 1981, pp. 123–157.

    Google Scholar 

  136. Stein, W.D. Facilitated diffusion of calcium across the rat intestinal epithelial cell. J. Nutr. 122:651–656, 1992.

    PubMed  CAS  Google Scholar 

  137. Stewart, J.M., W.R. Driedzic, and J.A. Berkelaar. Fatty-acid-binding protein facilitates the diffusion of oleate in a model cytosol system. Biochem. J. 275:569–573, 1991.

    PubMed  CAS  Google Scholar 

  138. Weisiger, R.A. When is a carrier not a membrane carrier? The cytoplasmic transport of amphipathic molecules. Hepatology 24:1288–1295, 1996.

    Article  PubMed  CAS  Google Scholar 

  139. Stolz, A., H. Takikawa, M. Ookhtens, and N. Kaplowitz. The role of cytoplasmic proteins in hepatic bile acid transport. Ann. Rev. Physiol. 51:161–176, 1989.

    Article  CAS  Google Scholar 

  140. Stremmel, W., C. Tiribelli, and K. Vyska. The multiplicity of sinusoidal membrane carrier systems of organic anions. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 225–234.

    Google Scholar 

  141. Stump, D.D., R.M. Nunes, D. Sorrentino, L.M. Isola, and P.D. Berk. Characterization of two distinct components of hepatic oleate uptake. Hepatology 16:865A, 1992.

    Article  Google Scholar 

  142. Stump, D.D., R.M. Nunes, D. Sorrentino, L.M. Isola, and P.D. Berk. Characteristics of oleate binding to liver plasma membranes and its uptake by isolated hepatocytes. J. Hepatol. 16:304–315, 1992.

    Article  PubMed  CAS  Google Scholar 

  143. Suchy, F.J., W.F. Balistreri, J. Hung, P. Miller, and S.A. Garfield. Intracellular bile acid transport in rat liver as visualized by electron microscope autoradiography using a bile acid analogue. Am. J. Physiol. 245:G681–G689, 1983.

    PubMed  CAS  Google Scholar 

  144. Sweetser, D.A., R.O. Heuckeroth, and J.I. Gordon. The metabolic significance of mammalian fatty-acid-binding proteins: Abundant proteins in search of a function. Ann. Rev. Nutr. 7:337–359, 1987.

    Article  CAS  Google Scholar 

  145. Takikawa, H., J.C. Fernandez-Checa, J. Kuhlenkamp, A. Stolz, M. Ookhtens, and N. Kaplowitz. Effect of indomethacin on the uptake, metabolism and excretion of 3-ox-ocholic acid: Studies in isolated hepatocytes and perfused rat liver. Biochim. Biophys. Acta 1084:247–250, 1991.

    PubMed  CAS  Google Scholar 

  146. Tipping, E. and B. Ketterer. The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem. J. 195:441–452, 1981.

    PubMed  CAS  Google Scholar 

  147. Tipping, E., B. Ketterer, and L. Christodoulides. Interactions of small molecules with phospholipid bilayers. Binding to egg phosphatidylcholine of some organic anions (bromosulphophthalein, oestrone sulphate, haem and bilirubin) that bind to ligandin and aminoazo-dye-binding protein A. Biochem. J. 180:327–337, 1979.

    PubMed  CAS  Google Scholar 

  148. Tiribelli, C. Determinants in the hepatic uptake of organic anions. J. Hepatol. 14:385–390, 1992.

    Article  PubMed  CAS  Google Scholar 

  149. Verkman, A.S., J.A. Dix, and J.L. Seifter. Water and urea transport in renal microvillus membrane vesicles. Am. J. Physiol. 248:F650–F655, 1985.

    PubMed  CAS  Google Scholar 

  150. Voelker, D.R. Organelle biogenesis and intracellular lipid transport in eukaryotes. Microbiol. Rev. 55:543–560, 1991.

    PubMed  CAS  Google Scholar 

  151. Von Dippe, P. and D. Levy. Characterization of the bile acid transport system in normal and transformed hepatocytes. Photoaffinity labeling of the taurocholate carrier protein. J. Biol. Chem. 258:8896–8901, 1983.

    Google Scholar 

  152. Vork, M.M., J.F. Glatz, and G.J. Van der Vusse. On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein. J. Theor. Biol. 160:207–222, 1993.

    Article  PubMed  CAS  Google Scholar 

  153. Weibel, E.R., W. Stäubli, H.R. Gnägi, and F.A. Hess. Correlated morphometric and biochemical studies on the liver cell. J. Cell. Biol. 68:91, 1969.

    Google Scholar 

  154. Weisiger, R.A. Dissociation from albumin: A potentially rate-limiting step in the clearance of substances by the liver. Proc. Natl. Acad. Sci. USA 82:1563–1567, 1985.

    Article  PubMed  CAS  Google Scholar 

  155. Weisiger, R.A. The role of albumin binding in hepatic organic anion transport. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavoloni and P.D. Berk. New York: Raven Press, 1993, pp. 171–196.

    Google Scholar 

  156. Wang, Y.-L., F. Lanni, P. McNeil, B. Ware, and L. Taylor. Mobility of cytoplasmic and membrane-associated actin in living cells. Proc. Natl. Acad. Sci. USA 79:4660–4664, 1982.

    Article  PubMed  CAS  Google Scholar 

  157. Kreis, T., B. Geiger, and J. Schlessinger. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell 29:835–845, 1982.

    Article  PubMed  CAS  Google Scholar 

  158. Salmon, E., W. Saxton, R. Leslie, M. Karow, and J. Mcintosh. Measurements of spindle microtubule dynamics by fluorescence redistribution after photobleaching. J. Cell. Biol. 7:253A–2531 (abstract), 1983.

    Google Scholar 

  159. Weisiger, R.A. Cytoplasmic transport of lipids: Role of binding proteins. Comp. Biochem. Physiol. 115B:319–331, 1996.

    CAS  Google Scholar 

  160. Weisiger, R.A., S.M. Pond, and L. Bass. Albumin enhances unidirectional fluxes of fatty acid across a lipid-water interface: Theory and experiments. Am. J. Physiol. 257:G904–G916, 1989.

    PubMed  CAS  Google Scholar 

  161. Weisiger, R.A., S.M. Pond, and L. Bass. Hepatic uptake of protein-bound ligands: Extended sinusoidal perfusion model. Am. J. Physiol. 261:G872–G884, 1991.

    PubMed  CAS  Google Scholar 

  162. Westergaard, H. and J.M. Dietschy. The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell. J. Clin. Invest. 58:97–108, 1976.

    Article  PubMed  CAS  Google Scholar 

  163. Wheatley, D.N., A. Redfern, and R.P. Johnson. Heat-induced disturbances of intracellular movement and the consistency of the aqueous cytoplasm in HeLa S-3 cells: A laser-Doppler and proton NMR study. Physiol. Chem. Phys. Med. NMR 23:199–216, 1991.

    PubMed  CAS  Google Scholar 

  164. Wieland, T., M. Nassal, W. Kramer, G. Fricker, U. Bickel, and G. Kurz. Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamanide by photoaffinity labeling. Proc. Natl. Acad. Sci. USA 81:5232–5236, 1984.

    Article  PubMed  CAS  Google Scholar 

  165. Wisse, E., R.B. De Zanger, K. Charrels, P. Van Der Smissen, and R.S. McCuskey. The liver sieve: Considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5:683–692, 1985.

    Article  PubMed  CAS  Google Scholar 

  166. Wojcieszyn, J.W., R.A. Schlegel, E.S. Wu, and K.A. Jacobson. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc. Natl. Acad. Sci. USA 78:4407–4410, 1981.

    Article  PubMed  CAS  Google Scholar 

  167. Yguerabide, J., J.A. Schmidt, and E.E. Yguerabide. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys. J. 40:69–75, 1982.

    Article  PubMed  CAS  Google Scholar 

  168. Yoshida, H., M. Yusin, I. Ren, J. Kuhlenkamp, T. Hirano, A. Stolz, and N. Kaplowitz. Identification, purification, and immunochemical characterization of a tocopherol-binding protein in rat liver cytosol. J. Lipid Res. 33:343–350, 1992.

    PubMed  CAS  Google Scholar 

  169. Zilversmit, D.B. Lipid transfer proteins. J. Lipid Res. 25:1563–1569, 1984.

    PubMed  CAS  Google Scholar 

  170. Zimniak, P. and Y.C. Awasthi. ATP-dependent transport systems for organic anions. Hepatology 17:330–339, 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Weisiger, R.A. (1998). Impact of Extracellular and Intracellular Diffusion on Hepatic Uptake Kinetics. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics