Skip to main content

Abstract

Cytokines play a critical role in determining the nature of an organism’s response to a great variety of immunological challenges. A protective immune response requires not only that the appropriate cytokines are produced, but that the magnitude and timing of the production be carefully regulated as well. The dysregulation of cytokine expression at any level can have profound pathophysiological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown MA, Hural J. Functions of IL-4 and control of its expression. Crit Rev Immunol 1997;17:1–32.

    PubMed  CAS  Google Scholar 

  2. Issekutz TB. Effects of six different cytokines on lymphocyte adherence to microvascular endothelium and in vivo lymphocyte migration in the rat. J Immunol 1990;144:2140–2146.

    PubMed  CAS  Google Scholar 

  3. Schleimer RP, Sterbinsky SA, Kaiser J, et al. IL-4 induces adherence of human eosinophils but not neutrophils to endothelium: association with VCAM-1. J Immunol 1992;148:1086–1092.

    PubMed  CAS  Google Scholar 

  4. Swain S. IL4 dictates T-cell differentiation. Res Immunol 1993;144:616–620.

    PubMed  CAS  Google Scholar 

  5. Seder RA, Paul WE, Davis MM, et al. The presence of interleukin-4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med 1992;176:1091–1098.

    PubMed  CAS  Google Scholar 

  6. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature (Lond) 1996;383:787–793.

    CAS  Google Scholar 

  7. Mueller R, Krahl T, Sarvetnick N. Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 1996;184:1093–1099.

    PubMed  CAS  Google Scholar 

  8. Racke MK, Bonomo A, Scott DE, et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 1994;180:1961–1916.

    PubMed  CAS  Google Scholar 

  9. Racke MK, Burnett D, Pak SH, et al. Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J Immunol 1995;154:450–458.

    PubMed  CAS  Google Scholar 

  10. Kuchroo VK, Das MP, Brown JA, et al. B7–1 and B7–2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995;80:707–718.

    PubMed  CAS  Google Scholar 

  11. Gordon J, Burd P. Mast cells as a source of multifunctional cytokines. Immunol Today 1990;11:458–464.

    PubMed  CAS  Google Scholar 

  12. Smith TJ, Ducharme LA, Weis JH. Preferential expression of interleukin-12 or interleukin-4 by bone marrow mast cells derived in mast cell growth factor or interleukin-3. Eur J Immunol 1994;24:822–826.

    PubMed  CAS  Google Scholar 

  13. Gupta AA, Leal-Berumen I, Croitoru K, et al. Rat peritoneal mast cells produce IFN-γ following IL-12 treatment but not in response to IgE-mediated activation. J Immunol 1996;157:2123–2128.

    PubMed  CAS  Google Scholar 

  14. Alexander WS, Lyman SD,Wagner EF. Expression of functional c-kit receptors rescues the genetic defect of W mutant mast cells. EMBO J 1991;10:3683–3691.

    PubMed  CAS  Google Scholar 

  15. Nocka K, Tan JC, Chiu E, et al. Molecular basis of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J 1990;9:1805–1813.

    PubMed  CAS  Google Scholar 

  16. Zhang Y, Ramos F, Jakschik B. Neutrophil recruitment by tumor necrosis factor from mast cells in immune complex peritonitis. Science 1992;258:1957–1959.

    PubMed  CAS  Google Scholar 

  17. Kitamura Y, Go S, Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 1978;52:447–452.

    PubMed  CAS  Google Scholar 

  18. Echtenacher B, Mannel D, Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature (Lond) 1996;381:75–76.

    CAS  Google Scholar 

  19. Malavija R, Ikeda T, Ross E, et al. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature (Lond) 1996;381:77–80.

    Google Scholar 

  20. Sabin EA, Pearce EJ. Early IL-4 production by non-CD4+ cells at the site of antigen deposition predicts the development of a T helper 2 cell response to Schistosoma mansoni eggs. J Immunol 1995;155:4844–4853.

    PubMed  CAS  Google Scholar 

  21. Sabin EA, Kopf MA, Pearce EJ. Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J Exp Med 1996;184:1871–1878.

    PubMed  CAS  Google Scholar 

  22. Mosmann TR, Bond MW, Coffman RL, et al. T-cell and mast cell lines respond to B-cell stimulatory factor 1. Proc Natl Acad Sci USA 1986;83:5654–5658.

    PubMed  CAS  Google Scholar 

  23. Snapper CM, Finkelman FD, Paul WE. Regulation of IgG1 and IgE production by interleukin 4. Immunol Rev 1988;102:51–75.

    PubMed  CAS  Google Scholar 

  24. Snapper CM, Finkelman FD, Paul WE. Differential regulation of IgG1 and IgE synthesis by interleukin 4. J Exp Med 1988;167:183–196.

    PubMed  CAS  Google Scholar 

  25. Schultz CL, Coffman RL. Control of isotype switching by T cells and cytokines. Curr Opin Immunol 1991;3:350–354.

    PubMed  CAS  Google Scholar 

  26. Fuleihan R, Ahern D, Geha RS. Expression of the CD40 ligand in T lymphocytes and induction of IgE isotype switching. Int Arch Allergy Immunol 1995;107:43–44.

    PubMed  CAS  Google Scholar 

  27. Klaus S, Berberich I, Shu G, et al. CD40 and its ligand in the regulation of humoral immunity. Semin Immunol 1994;6:279–286.

    PubMed  CAS  Google Scholar 

  28. Gauchat J-F, Henchoz S, Mazzei G, et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature (Lond) 1993;365:340–343.

    CAS  Google Scholar 

  29. Yoshimoto T, Paul WE. CD4+, NK1.1+ T cells promptly produce interleukin-4 in response to in vivo challenge with anti-CD3. J Exp Med 1994;179:1285–1295.

    PubMed  CAS  Google Scholar 

  30. Yoshimoto T, Bendelac A, Watson C, et al. Role of NK1.1+ T cells in a Th2 response and in immunoglobulin E production. Science 1995;270:1845–1847.

    CAS  Google Scholar 

  31. Yoshimoto T, Bendelac A, Hu-Li J, et al. Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc Natl Acad Sci USA 1995;92:11931–11934.

    PubMed  CAS  Google Scholar 

  32. Gombert JM, Herbelin A, Tancrede-Bohin E, et al. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 1996;26:2989–2998.

    PubMed  CAS  Google Scholar 

  33. Brown D, Fowell D, Corry D, et al. Beta 2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J Exp Med 1996;184:1295–1304.

    PubMed  CAS  Google Scholar 

  34. Weid T, Beebe A, Roopenian D, et al. Early production of IL-4 and induction of Th2 responses in the lymph node originate from an MHC class I-independent CD4+NK1.1- T cell population. J Immunol 1996;157:4421–4427.

    PubMed  Google Scholar 

  35. Zhang Y, Rogers K, Lewis D. Beta 2-microglobulin-dependent T cells are dispensable for allergen-induced T helper 2 responses. J Exp Med 1996;184:1507–1512.

    PubMed  CAS  Google Scholar 

  36. Bradding P, Feather IH, Howarth PH, et al. Interleukin-4 is localized to and released by human mast cells. J Exp Med 1992;176:1381–1386.

    PubMed  CAS  Google Scholar 

  37. Beaven MA, Roger J, Moore JP, et al. The mechanism of the calcium signal and correlation with histamine release in 2H3 cells. J Biol Chem 1984;259:7129–7136.

    PubMed  CAS  Google Scholar 

  38. Beaven MA, Moore JP, Smith GA, et al. The calcium signal and phosphatidylinositol breakdown in 2H3 cells. J Biol Chem 1984;259:7137–7142.

    PubMed  CAS  Google Scholar 

  39. Beaven MA, Metzger H. Signal transduction by Fc receptors: the FcεRI case. Immunol Today 1993;14:222–226.

    PubMed  CAS  Google Scholar 

  40. Stump RF, Oliver JM, Cragoe EJ, et al. The control of mediator release from RBL-2H3 cells: roles for Ca2+, Na+ and protein kinase C. J Immunol 1987;139:881–886.

    PubMed  CAS  Google Scholar 

  41. Ali H, Collado-Escobar DM, Beaven MA. The rise in concentration of free Ca2+ and of pH provides sequential, synergistic signals for secretion in antigen-stimulated rat basophilic leukemia (RBL-2H3) cells. J Immunol 1989;143:2626–2633.

    PubMed  CAS  Google Scholar 

  42. Cunha-Melo JR, Gonzaga HMS, Ali H, et al. Studies of protein kinase C in the rat basophilic leukemia (RBL-2H3) cell reveal that antigen-induced signals are not mimicked by the actions of phorbol myristate acetate and Ca2+ iono-phore. J Immunol 1989;143:2617–2625.

    PubMed  CAS  Google Scholar 

  43. Benhamou M, Gutking JS, Robbins KC, et al. Tyrosine phosphorylation coupled to IgE receptor-mediated signal transduction and histamine release. Proc Natl Acad Sci USA 1990;87:5327–5332.

    PubMed  CAS  Google Scholar 

  44. Park DJ, Min HK, Rhee SG. IgE-induced tyrosine phosphorylation of phospholipase C-γ1 in rat basophilic leukemia cells. J Biol Chem 1991;266:24237–24240.

    PubMed  CAS  Google Scholar 

  45. Li W, Deanin GG, Margolis B, et al. Fcε-RI-mediated tyrosine phosphorylation of multiple proteins including phospholipase Cγ1 and the receptor β/γ 2 complex in RBL-2H3 cells. Mol Cell Biol 1992;12:3176–3182.

    PubMed  CAS  Google Scholar 

  46. Hamawy MM, Minoguchi K, Swaim WD, et al. A 77-kDa protein associates with pp125FAK in mast cells and becomes tyrosine-phosphorylated by high affinity IgE receptor aggregation. J Biol Chem 1995;270:12305–12309.

    PubMed  CAS  Google Scholar 

  47. Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase. Curr Opin Genet Dev 1994;4:82–89.

    PubMed  CAS  Google Scholar 

  48. Tsai M, Chen RH, Tam SY, et al. Activation of MAP kinases, pp90rsk and pp70-S6 kinases in mouse mast cells by signaling through the c-kit receptor tyrosine kinase or FcεRI: rapamycin inhibits activation of pp70-S6 kinase and proliferation in mouse mast cells. Eur J Immunol 1993;23:3286–3291.

    PubMed  CAS  Google Scholar 

  49. Turner H, Cantrell DA. Distinct ras effector pathways are involved in FcεRI regulation of the transcriptional activity of elk-1 and NFAT in mast cells. J Exp Med 1997;185:43–53.

    PubMed  CAS  Google Scholar 

  50. Sahara N, Siraganian RP, Oliver C. Morphological changes induced by the calcium ionophore A23187 in rat basophilic leukemia (2H3) cells. J Histochem Cytochem 1990;38:975–983.

    PubMed  CAS  Google Scholar 

  51. Rao A, Luo C, Hogan P. Transcription factors of the NFAT family: regulation and function. Ann Rev Immunol 1997;15:707–747.

    CAS  Google Scholar 

  52. Prieschl EE, Pendi GG, Harrer NE, et al. p21ras links FcεRI to NF-AT family members in mast cells. J Immunol 1995;155:4963–4970.

    PubMed  CAS  Google Scholar 

  53. Beaven MA, Guthrie DF, Moore JP, et al. Synergistic signals in the mechanism of antigen-induced exocytosis in 2H3 cells: evidence for an unidentified signal required for histamine release. J Cell Biol 1987;105:1129–1136.

    PubMed  CAS  Google Scholar 

  54. Lewin I, Nechushtan H, Ke Q, et al. Regulation of AP-1 expression and activity in antigen-stimulated mast cells: the role played by protein kinase C and the possible involvement of fos interacting protein. Blood 1993;12:3745–3751.

    Google Scholar 

  55. Razin E, Szallasi Z, Kazanietz MG, et al. Protein kinases C-β and C-ε link the mast cell high-affinity receptor for IgE to the expression of c-fos and c-jun. Proc Natl Acad Sci USA 1994;91:7722–7726.

    PubMed  CAS  Google Scholar 

  56. Chiu R, Boyle WJ, Meek J, et al. The c-fos protein interacts with c-jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 1988;54:541–552.

    PubMed  CAS  Google Scholar 

  57. Gentz R, Rauscher FJ, Abate C, et al. Parallel association of fos and jun leucine zippers juxtaposes DNA binding domains. Science 1989;243:1695–1699.

    PubMed  CAS  Google Scholar 

  58. Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 1988;240:1759–1764.

    PubMed  CAS  Google Scholar 

  59. Bochner BS, Lichtenstein LM. Anaphylaxis. N Engl J Med 1991;324:1785–1790.

    PubMed  CAS  Google Scholar 

  60. Leal-Berumen I, Conlon P, Marshall JS. IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide. J Immunol 1994;152:5468–5476.

    PubMed  CAS  Google Scholar 

  61. Tara D, Weiss DL, Brown MA. An activation responsive element in the murine interleukin-4 gene is the site of an inducible DNA-protein interaction. J Immunol 1993;151:3617–3626.

    PubMed  CAS  Google Scholar 

  62. Tara D, Weiss DL, Brown MA. Characterization of the constitutive and inducible components of a T cell activation responsive element. J Immunol 1995;154:4592–4602.

    PubMed  CAS  Google Scholar 

  63. Chuvpilo S, Schomberg C, Gerwig R, et al. Multiple closely-linked NF-AT/octamer and HMG I(Y) binding sites are part of the interleukin-4 promoter. Nucleic Acids Res 1993;21:5694–5704.

    PubMed  CAS  Google Scholar 

  64. Hodge MR, Rooney JW, Glimcher LH. The proximal promoter of the IL-4 gene is composed of multiple essential regulatory sites that bind at least two distinct factors. J Immunol 1995;154:6397–6405.

    PubMed  CAS  Google Scholar 

  65. Szabo SJ, Gold JS, Murphy TL, et al. Identification of cis-acting regulatory elements controlling interleukin-4 gene expression in T cells: roles for NF-Y and NF-ATc. Mol Cell Biol 1993;13:4793–4805.

    PubMed  CAS  Google Scholar 

  66. Kubo M, Kincaid RL, Ransom JT. Activation of the interleukin-4 gene is controlled by the unique calcineurin-dependent transcriptional factor NF(P). J Biol Chem 1994;269:19441–19446.

    PubMed  CAS  Google Scholar 

  67. Rooney JW, Hodge MR, McCaffrey PG, et al. A common factor regulates both Th1- and Th2-specific cytokine gene expression. EMBO J 1994;13:625–633.

    PubMed  CAS  Google Scholar 

  68. Wenner CA, Szabo SJ, Murphy KM. Identification of IL-4 promoter elements conferring Th2-restricted expression during T helper cell subset development. J Immunol 1997;158:765–773.

    PubMed  CAS  Google Scholar 

  69. Bruhn KW, Nelms K, Boulay J-L, et al. Molecular dissection of the mouse interleukin-4 promoter. Proc Natl Acad Sci USA 1993;90:9707–9711.

    PubMed  CAS  Google Scholar 

  70. Pierce JH, DiFiore PP, Aaronson SA, et al. Neoplastic transformation of mast cells by Abelson-MuLV: abrogation of IL-3 dependence by a nonautocrine mechanism. Cell 1985;41:685–693.

    PubMed  CAS  Google Scholar 

  71. Weiss D, Hural J, Tara D, et al. Nuclear factor of activated T cells is associated with a mast cell interleukin 4 transcription complex. Mol Cell Biol 1995;16:228–235.

    Google Scholar 

  72. Ho I-C, Hodge M, Rooney JW, et al. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 1996;85:973–983.

    PubMed  CAS  Google Scholar 

  73. Hoey T, Sun Y-L, Williamson K, et al. Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 1995;2:461–472.

    PubMed  CAS  Google Scholar 

  74. Luo C, Burgeon E, Carew J, et al. Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes. Mol Cell Biol 1996;16:3955–3966.

    PubMed  CAS  Google Scholar 

  75. Park J, Takeuchi A, Sharma S. Characterization of a new isoform of the NFAT (nuclear factor of activated T cell) gene family member NFATc. J Biol Chem 1996;271:20914–20921.

    PubMed  CAS  Google Scholar 

  76. Jain J, Burgeon E, Badaliam TM, et al. A similar DNA-binding motif in NFAT family proteins and the rel homology region. J Biol Chem 1995;270:4138–4145.

    PubMed  CAS  Google Scholar 

  77. Wolfe SA, Zhou P, Dotsch V, et al. Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc. Nature (Lond) 1997;385:172–176.

    CAS  Google Scholar 

  78. Northrop JP, Ho SN, Timmerman LA, et al. NF-AT components define a family of transcription factors targeted in T cell activation. Nature (Lond) 1994;369:497–502.

    CAS  Google Scholar 

  79. Masuda ES, Naito Y, Tokumitsu H, et al. NFATx, a novel member of the nuclear factor of activated T cells family that is expressed predominantly in the thymus. Mol Cell Biol 1995;15:2697–2706.

    PubMed  CAS  Google Scholar 

  80. Ho SN, Thomas DJ, Timmerman LA, et al. NFATc3, a lymphoid-specific NFATc family member that is calcium-regulated and exhibits distinct DNA binding specificity. J Biol Chem 1995;270:19898–19907.

    PubMed  CAS  Google Scholar 

  81. Xanthoudakis S, Viola JPB, Shaw KTY, et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 1996;272:892–895.

    PubMed  CAS  Google Scholar 

  82. Hodge M, Ranger AM, Hoey T, et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 1996;4:397–405.

    PubMed  CAS  Google Scholar 

  83. McCaffrey PG, Perrino BA, Soderling TR, et al. NF-ATp, a T lymphocyte DNA binding protein that is a target for calcineurin and immunosuppressive drugs. J Biol Chem 1993;268:3747–3752.

    PubMed  CAS  Google Scholar 

  84. Jain J, McCaffrey P, Miner Z, et al. The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature (Lond) 1993;365:352–355.

    CAS  Google Scholar 

  85. Shibasaki F, Price E, Milan D, et al. Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature (Lond) 1996;382:370–373.

    CAS  Google Scholar 

  86. Park J, Yaseen NR, Hogan P, et al. Phosphorylation of the transcription factor NFATp inhibits its DNA binding activity in cyclosporin A-treated human B and T cells. J Biol Chem 1995;270:20653–20659.

    PubMed  CAS  Google Scholar 

  87. Northrop JP, Ullman KS, Crabtree GR. Characterization of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells (NF-AT) complex. J Biol Chem 1993;268:2917–2923.

    PubMed  CAS  Google Scholar 

  88. Yaseen N, Park J, Kerppola T, et al. A central role for fos in human B- and T-cell NFAT (nuclear factor of activated T cells): an acidic region is required for in vitro assembly. Mol Cell Biol 1994;14:6886–6895.

    PubMed  CAS  Google Scholar 

  89. Rooney JW, Hoey T, Glimcher LH. Coordinate and cooperative roles for NF-AT and AP-1 in the regulation of the murine IL-4 gene. Immunity 1995;2:473–483.

    PubMed  CAS  Google Scholar 

  90. Boise LH, Petryniak B, Mao X, et al. The NF-AT-1 DNA binding complex in activated T cells contains Fra-1 and jun B. Mol. Cell Biol 1993;13:1911–1919.

    CAS  Google Scholar 

  91. Jain J, McCaffrey PG, Valge-Archer VE, et al. Nuclear factor of activated T cells contains Fos and Jun. Nature (Lond) 1992;356:801–804.

    CAS  Google Scholar 

  92. Prieschl EE, Gouilleux GV, Walker C, et al. A nuclear factor of activated T cell-like transcription factor in mast cells is involved in IL-5 gene regulation after IgE plus antigen stimulation. J Immunol 1995;154:6112–6119.

    PubMed  CAS  Google Scholar 

  93. McCaffrey PG, Goldfeld AE, Rao A. The role of NFATp in cyclosporin A-sensitive tumor necrosis factor-α gene transcription. J Biol Chem 1994;269:30445–30450.

    PubMed  CAS  Google Scholar 

  94. Hodge M, Chun H, Rengarajan J, et al. NF-AT-driven interleukin-4 transcription potentiated by NIP45. Science 1996;274:1903–1905.

    PubMed  CAS  Google Scholar 

  95. Kotanides H, Reich NC. Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4. Science 1993;262:1265–1267.

    PubMed  CAS  Google Scholar 

  96. Rothman P, Lutzker S, Cook W. Mitogen plus interleukin 4 induction of Ce transcriptis in B cells. J Exp Med 1988;168:2385–2389.

    PubMed  CAS  Google Scholar 

  97. Conrad DH, Waldschmidt TJ, Lee WT, et al. Effect of B cell stimulatory factor-1 (interleukin 4) on Fcε and Fcγ receptor. J Immunol 1987;139:2290–2296.

    PubMed  CAS  Google Scholar 

  98. Ohara J, Paul W. Up-regulation of interleukin 4/B-cell stimulatory factor 1 receptor expression. Proc Natl Acad Sci 1988;85:8221–8225.

    PubMed  CAS  Google Scholar 

  99. Takeda K, Tanaka T, Shi W, et al. Essential role of Stat6 in IL-4 signalling. Nature (Lond) 1996;380:627–630.

    CAS  Google Scholar 

  100. Shimoda K, Deursen J, Sangster M, et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature (Lond) 1996;380:630–633.

    CAS  Google Scholar 

  101. Kaplan M, Schindler U, Smiley S, et al. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity 1996;4:313–319.

    PubMed  CAS  Google Scholar 

  102. Lederer JA, Perez VL, DesRoches L, et al. Cytokine transcriptional events during helper T cell subset differentiation. J Exp Med 1996;380:397–406.

    Google Scholar 

  103. Huang H, Hu-Li J, Chen H, et al. IL-4 and IL-13 production in differentiated T helper type 2 cells is not IL-4-dependent. J Immunol 1997;159:3731–3738.

    PubMed  CAS  Google Scholar 

  104. Agarwal S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 1998;9:765–775.

    PubMed  CAS  Google Scholar 

  105. Brown MA, Pierce JH, Watson CJ, et al. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cell lines. Cell 1987;50:809–818.

    PubMed  CAS  Google Scholar 

  106. Gross DS, Garrard WT. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 1988;57:159–197.

    PubMed  CAS  Google Scholar 

  107. Henkel G, Weiss DL, McCoy R, et al. A DNAse I hypersensitive site defines a mast cell enhancer. J Immunol 1992;149:323–330.

    Google Scholar 

  108. Henkel G, Brown MA. PU.1 and GATA: components of a mast cell-specific interleukin 4 intronic enhancer. Proc Natl Acad Sci USA 1994;91:7737–7741.

    PubMed  CAS  Google Scholar 

  109. Bird JJ, Brown DR, Mullen AC, et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 1998;9:229–237.

    PubMed  CAS  Google Scholar 

  110. Siden E. Regulated expression of germline antigen receptor genes in mast cell lines from the murine embryo. J Immunol 1993;150:4427–4437.

    PubMed  CAS  Google Scholar 

  111. Smale S, Baltimore D. The “initiator” as a transcriptional control element. Cell 1989;57:103–113.

    PubMed  CAS  Google Scholar 

  112. Weis L, Reinberg D. Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. FASEB J 1992;6:3300–3309.

    PubMed  CAS  Google Scholar 

  113. Ayoubi TAY, Van de Ven WJM. Regulation of gene expression by alternative promoters. FASEB J 1996;10:453–460.

    PubMed  CAS  Google Scholar 

  114. Ernst P, Smale ST. Combinatorial regulation of transcription I: general aspects of transcriptional control. Immunity 1995;2:311–319.

    PubMed  Google Scholar 

  115. Riley LK, Morrow JK, Danton MJ, et al. Human terminal deoxyribonucleotidyltransferase: molecular cloning and structural analysis of the gene and 5’ flanking region. Proc Natl Acad Sci USA 1988;85:2489–2493.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Sherman, M.A., Brown, M.A. (1999). Regulation of IL-4 Expression in Mast Cells. In: Razin, E., Rivera, J. (eds) Signal Transduction in Mast Cells and Basophils. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2154-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2154-8_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7435-3

  • Online ISBN: 978-1-4612-2154-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics