Skip to main content

Antioxidants and the Treatment of Neurological Disease

  • Chapter
Book cover Cell Death and Diseases of the Nervous System

Abstract

A major tenet of modern industrial society is that more is better, that one cannot “get enough of a good thing.” As members of such a society, clinicians and scientists have not been immune to its enculturations and often adopt the “more is better” approach in the pharmacological treatment of human disease. However, anyone who has prescribed drugs to patients in the clinic or applied drugs to cells or animals in the laboratory appreciates that therapy represents a balancing act between the salutary and the toxic effects of the agent utilized. In some cases, the window between these two effects is small and minor increases in dosage can lead to unwanted consequences. Narrow therapeutic windows are particularly apparent under circumstances where the molecular targets of drugs simultaneously play a role in disease pathology and normal cell function. One class of therapeutic agents where this dilemma is becoming more evident is antioxidants. Indeed, recent evidence has begun to define roles for the primary cellular targets of antioxidants, free radicals, not only as mediators of neuronal injury, but also as intracellular second messengers (1–3) that are important in growth factor signaling and vasoregulation as well as human defense against invading micro-organisms (4). Furthermore, some antioxidants become prooxidants under appropriate conditions (5). The question arises: What are the factors one must consider in identifying and developing antioxidants appropriate for use in the clinic? The first part of this chapter will outline one strategy for defining whether an antioxidant is viable as a neuroprotective agent. It will then look toward the future and discuss novel approaches to minimizing free radical toxicity in the nervous system.

Nothing in excess—Solon quoted by Diogenes Laertius in Lives of the Philosophers

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schreck R, Baeuerle PA. A role for radicals as second messengers. Trends in Cell Biol 1: 39–42.

    Google Scholar 

  2. Dawson VL, Dawson TM. Physiological and toxicological actions of nitric oxide in the central nervous system. Adv Pharmacol 1995, 34: 323–342.

    Article  PubMed  CAS  Google Scholar 

  3. Sundaresan M, Yu ZX, Ferraris VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction Science 1995, 270: 296–299.

    Article  PubMed  CAS  Google Scholar 

  4. Meloni-Bruneri LH, Campa A, Abdalla DS, Calich VL, Lenzi HL, Burger E. Neutrophil oxidative metabolism and killing of P. Brasilensis after air pouch infection of susceptible and resistant mice. J Leukoc Biol 1996, 59: 526–533.

    PubMed  CAS  Google Scholar 

  5. Thomas SR, Neuzil J, Stocker R. Cosupp lementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation. Arteriorscler Thromb Vasc Biol 1996, 16: 687–696.

    Article  CAS  Google Scholar 

  6. Hall ED, McCall JM, Means ED. Therapeutic potential of the lazaroids (21 aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol 1994, 28: 221–268.

    Article  PubMed  CAS  Google Scholar 

  7. Levine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 1994, 233: 346–357.

    Article  PubMed  CAS  Google Scholar 

  8. Carney JM, Carney AM. Role of protein oxidation in aging and in age-associated neurode-generative diseases. Life Sci 1994, 55: 25–26.

    Article  Google Scholar 

  9. Floyd RA, Carney JM. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 1992, 32: S22–S27.

    Article  PubMed  CAS  Google Scholar 

  10. Halliwell B. Oxygen radicals as key mediators in neurological disease: Fact or fiction? Ann Neurol 1992, 32(Suppl.): S10–S15.

    Google Scholar 

  11. Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N. Oxidative damage in Alzheimer’s [letter] Nature 1996, 382: 120–121.

    Article  PubMed  CAS  Google Scholar 

  12. Enokido Y, Hatanaka H. Apoptotic cell death occurs in hippocampal neurons cultured in a high oxygen atmosphere. Neuroscience 1993, 57(4): 965—972.

    Google Scholar 

  13. Freeman BA, Crapo JD. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 1981, 256: 10986–10992.

    PubMed  CAS  Google Scholar 

  14. Crapo JD, McCord JM. Oxygen induced changes in pulmonary Superoxide dismutase assayed by antibody titrations. Am J Physiol 1976, 231: 1196–1203.

    PubMed  CAS  Google Scholar 

  15. Kay den H.J. The neurologic syndrome of vitamin E deficiency: A significant cause of ataxia Neurology 1993, 43: 2167–2169.

    Article  PubMed  CAS  Google Scholar 

  16. Rosen DR, Siddique T, Patterson D. et al. Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362: 59–62.

    Article  PubMed  CAS  Google Scholar 

  17. Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu Z-S, Wong PC, Brown RH Jr., Price DL, Sisodia SS, Cleveland DW. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possess significant activity. Proc Natl Acad Sci USA 1994, 91: 8292.

    Article  PubMed  CAS  Google Scholar 

  18. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon KY, Deng H-X, Chen W, Zhai P, Suffit RL, Siddique T. Motor neuron degeneration in mice expressing a human Cu,Zn Superoxide dismutase mutation. Science 1994, 264: 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  19. Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, Valentine JS, Bredesen DE. Altered reactivity of Superoxide dismutase in familial amyotrophic lateral sclerosis. Science 1996, 271: 515–518.

    Article  PubMed  CAS  Google Scholar 

  20. Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn Superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci USA 1996, 93: 5709–5714.

    Article  PubMed  CAS  Google Scholar 

  21. Orr WC, Sohal RS. Extension of life-span by overexpression of Superoxide dismutase and catalase in Drosophila Melanogaster. Science 1994, 263: 1128–1130.

    Article  PubMed  CAS  Google Scholar 

  22. Gurney ME, Cutting FB, Zhai PZ, Doble A, Taylor CP, Andrus PK, Hall ED. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann of Neurol 1996, 39: 147–157.

    Article  CAS  Google Scholar 

  23. Dykens, JA, Stern A, Trenkner E. Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion injury. J Neurochem 1987, 49: 1222–1228.

    Article  PubMed  CAS  Google Scholar 

  24. Halliwell B. Free radicals and antioxidants: A personal view. Nutr Rev 1991, 52: 253–265.

    Article  Google Scholar 

  25. Aruoma, OI. Characterization of drugs as antioxidant prophylactics. Free Radical Biol Med 1996, 20: 675–705.

    Article  CAS  Google Scholar 

  26. Halliwell, B. Antioxidant characterization: Methodology and mechanism. Biochem Pharmacol 1995, 49: 1341–1348.

    Article  PubMed  CAS  Google Scholar 

  27. Muse KE, Oberley TD, Sempf JM, Oberley LW. Immunolocalization of antioxidant enzymes in adult hamster kidney. Histochem J 1994, 26: 734–753.

    Article  PubMed  CAS  Google Scholar 

  28. LeWitt PA. Neuroprotection by anti-oxidant strategies in Parkinson’s Disease. Eur Neurol 1993, 33: 24–30.

    Article  PubMed  Google Scholar 

  29. Parkinson’s Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989, 321: 1364–1371.

    Article  Google Scholar 

  30. Mecocci P, MacGarvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 1994, 36: 747–751.

    Article  PubMed  CAS  Google Scholar 

  31. Beal, MF. Energy, oxidative damage, and Alzheimer’s disease: Clues to the underlying puzzle. Neurobiol Aging 1994, 15, Suppl 2: S171–S174.

    Article  Google Scholar 

  32. Giulivi C. Davies KJ. Dityrosine: A marker for oxidatively modified proteins and selective proteolysis. Methods Enzymol 1994, 233: 363–371.

    Article  PubMed  CAS  Google Scholar 

  33. Shigenaga MK, Aboujaoude EN, Chen Q, Ames BN. Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high performance liquid chromatography with electrochemical detection. Methods Enzymol 1994, 234: 16–33.

    Article  PubMed  CAS  Google Scholar 

  34. Mendis S, Sobotka PA, Leja FL, Euler DE. Breath pentane and plasma lipid peroxides in ischemic heart disease. Free Radical Biol Med 1992, 5: 679–684.

    Google Scholar 

  35. Arterbery VE, Pryor WA, Jiang L, Sehnert SS, Foster WM, Abrams RA, Williams JR, Wharam MD Jr., Risby TH. Breath ethane generation during clinical total body irradiation as a marker of oxygen-free-radical mediated lipid peroxidation: A case study. Free Radical Biol Med 1994, 17: 569–576.

    Article  CAS  Google Scholar 

  36. Price DL, Koliatsos VE, Wong PC, Pardo CA, Borchelt DR, Lee MK, Cleveland DW, Griffin, JW, Hoffman PN, Cork LC, Sisodia SS. Motor neuron disease and model systems: Aetiologies, mechanisms, and therapies. Ciba Found Symp 1996, 196: 3–13.

    PubMed  CAS  Google Scholar 

  37. Ratan RR, Murphy TH, Baraban JM. Oxidative stress-induces apoptosis in embryonic cortical neurons. J Neurochem 1994, 62: 376–379.

    Article  PubMed  CAS  Google Scholar 

  38. Ratan RR, Murphy TH, Baraban JM. Macromolecular synthesis inhibitors prevent oxidative stress induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J Neurosci 1994, 14: 4385–4392.

    PubMed  CAS  Google Scholar 

  39. Troy CM, Shelanski ML. Down regulation of copper/zinc Superoxide dismutase causes apoptotic death in neuronal PC 12 cells. Proc Natl Acad Sci USA 1994, 89: 9005–9009.

    Google Scholar 

  40. Manev H, Cagnoli CM, Atabay C, Kharlamov E, Ikonomovic MD, Grayson DR. Neuronal apoptosis in an in vitro model of photochemically induced oxidative stress. Exp Neurol 1995, 133: 198–206.

    Article  PubMed  CAS  Google Scholar 

  41. De Boer AG, Breimer DD. The blood brain barrier: Clinical implications for drug delivery to the brain. J Royal College Physicians of London 1994, 28: 502–506.

    Google Scholar 

  42. Pardridge WM. Peptide Drug Delivery to the Brain, Raven Press, NY, 1991.

    Google Scholar 

  43. Friden PM. Receptor-mediated transport of therapeutics across the blood brain barrier. 1994, Neurosurg 35: 294–298.

    Article  CAS  Google Scholar 

  44. Cortes CM, Shea PA, Ahlers ST, Auker CA, Verma A, Elayan I, Schrot J. Measurement of dityrosine after exposure to hyperbaric oxygen and chronic administration of corticotrophin releasing factor. Soc Neurosci Abst 1996, 22: 1921.

    Google Scholar 

  45. Laughton MJ, Halliwell B, Evans PJ, Hoult JRS. Antioxidant and pro-oxidant actions of the plant phenolics quercitin, gossypol and myricetin: Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 1989, 38: 2859–2865.

    Article  PubMed  CAS  Google Scholar 

  46. Halliwell B. Drug antioxidants effects: A basis for drug selection? Drugs 1994, 42: 569–605.

    Article  Google Scholar 

  47. River Y, Honigman S, Gomori JM, Reches A. Superficial hemosiderosis of the central nervous system. Mov Disord 1994, 9: 559–562.

    Article  PubMed  CAS  Google Scholar 

  48. Hartard C, Weisner B, Dieu C, Kunze K. Wilson’s disease with cerebral manifestations: Monitoring therapy by CSF concentration. J Neurol 1993, 241: 101–107.

    Article  PubMed  CAS  Google Scholar 

  49. Mino M. Clinical uses and abuses of vitamin E in children. Proc Soc Exp Biol Med 1992, 200: 266–270.

    PubMed  CAS  Google Scholar 

  50. Bredt DS, Snyder SH. Nitric oxide: A physiologic messenger molecule. Annu Rev Biochem 1994, 63: 175–195.

    Article  PubMed  CAS  Google Scholar 

  51. Cabiscol E., Levine RL. The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci USA 1996, 93(9): 4170–4174.

    Article  PubMed  CAS  Google Scholar 

  52. Acheson RM, Williams DRR. Does consumption of fruit and vegetables protect against stroke? Lancet 1993, 1191–1193.

    Google Scholar 

  53. Keli SO, Hertog MGL, Feskens EJM, Kromhout D. Dietary flavonoids, antioxidant vitamins and incidence of stroke—The Zutphen Study. Arch Int Med 1996, 637–642.

    Google Scholar 

  54. DeKeyser J, De Kippel N, Merkx H, Vervaeck M, Herroelen L. Serum concentrations of vitamins A and E and early outcome after ischemic stroke. Lancet 1992, 339: 1562–1565.

    Article  CAS  Google Scholar 

  55. Hennekens, C. Antioxidant vitamins and cancer. AJM 1994, 97(Suppl 3A.): 2S–4S.

    Google Scholar 

  56. Fahn S, Cohen G. The oxidative stress hypothesis in Parkinson’s Disease: evidence supporting it. Ann Neurol 1992, 32: 804–812.

    Article  PubMed  CAS  Google Scholar 

  57. Parkinson’s Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989, 321: 1364–1371.

    Article  Google Scholar 

  58. Pappert EJ, Tangney CC, Goetz CG, Ling ZD, Lipton JW, Stebbins GT, Carvey PM. Alpha-tocopherol in the ventricular cerebrospinal fluid of Parkinson’s disease patients: Dose response study and correlations with plasma levels. Neurology 1996, 47: 1037–1042.

    Article  PubMed  CAS  Google Scholar 

  59. Sohal RS, Weindruch R. Oxidative stress, caloric restriction and aging. Science 1996, 273: 59–63.

    Article  PubMed  CAS  Google Scholar 

  60. Prostera T, Zhang Y, Spencer SR, Wilczak CA, Talalay P. The electrophile counterattack response protection against neoplasia and toxicity. Advan Enzym Regul 1993, 33: 281–296.

    Article  Google Scholar 

  61. Murphy TH, De Long MJ, Coyle JT. Enhanced NAD(P)H:quinone reductase activity prevents glutamate toxicity produced by oxidative stress. J Neurochem 1991, 56: 990–995.

    Article  PubMed  CAS  Google Scholar 

  62. Duffy S, Murphy TH. Dopamine toxicity and the protective efficacy of recombinant antioxidant enzymes. Soc Neurosci Abst 1996, 22: 1481.

    Google Scholar 

  63. Wood KA, Youle RJ. Apoptosis and free radicals. Ann NY Acad Sci 1994, 738: 400–407.

    Article  PubMed  CAS  Google Scholar 

  64. Wood KA, Youle RJ. The role of free radicals and p53 in neuron apoptosis in vivo. J Neurosci 1995, 15: 5851–5857.

    PubMed  CAS  Google Scholar 

  65. Zhong LT, Sarafian T, Kane DJ, Charles C, Mah SP, Edwards RH, Bredesen DE. Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 1993, 90: 4533–4544

    Article  PubMed  CAS  Google Scholar 

  66. Wiedau-Pazos M. Trudell JR, Altenbach C, Kane DJ, Hubbell WL, Bredesen DE. Expression of bcl-2 inhibits cellular radical generation. Free Radic Res 1996, 24: 205–212.

    Article  PubMed  CAS  Google Scholar 

  67. Troy CM, Stefanis L, Prochiantz A, Greene LA, Shelanski ML. The contrasting role of ICE family proteases and interleukin-1 beta in apoptosis induced by trophic factor withdrawal and by copper/zinc Superoxide dismutase down-regulation. Proc Natl Acad Sci USA 1996, 93: 5365–5340.

    Article  Google Scholar 

  68. Derossi D, Joiliot AH, Chassaing G, and Prochiantz A. The third helix of the antennapedia homeodomain translocates through biological membranes. J of Biol Chem. 1994, 269: 10444–10450.

    CAS  Google Scholar 

  69. Mattson MP, Cheng B, Smith-Swintowsky VL. (1993) Growth factor mediated protection from excitotoxicity and disturbances in calcium and free radical metabolism. Semin Neurosci 1993, 5: 295–307.

    Article  CAS  Google Scholar 

  70. Sampath D, Jackson GR, Werrbach-Perez K, Perez-Polo JR. Effects of nerve growth factor on glutathione peroxidase and catalase in PC12 cells J Neurochem 1994, 62: 2476–2479.

    Article  PubMed  CAS  Google Scholar 

  71. Jackson GR, Werrbach-Perez K, Perez-Polo JR. Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J Neurosci Res 1990, 25: 360–368.

    Article  PubMed  CAS  Google Scholar 

  72. Tiffany-Castiglioni E, Perez-Polo J. Stimulation of resistance to 6-hydroxydopamine in a human neuroblastoma cell line by nerve growth factor. Neurosci Lett 1981, 26: 157–161.

    Article  PubMed  CAS  Google Scholar 

  73. Cheng B, Mattson MP. PDGFs protect hippocampal neurons against energy deprivation and oxidative injury: Evidence for induction of antioxidant pathways. J Neurosci 1995, 15: 7095–7104.

    PubMed  CAS  Google Scholar 

  74. Kirschner PB, Jenkins BG, Schulz JB, Finkelstein SP, Mathews RT, Rosen BR, Beal MF. NGF, BDNF, and NT-5, but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res 1996, 713: 1–2, 178–185.

    Article  PubMed  CAS  Google Scholar 

  75. Koh J-Y, Gwag BJ, Lobner D, Choi DW. Potentiated necrosis of cultured cortical cells by neurotrophins. Science 1996, 268: 573–575.

    Article  Google Scholar 

  76. Ratan RR, Lee PJ, Baraban JM. Serum deprivation inhibits glutathione depletion-induced death in embryonic cortical neurons: Evidence against oxidative stress as a common final mediator of neuronal apoptosis. Neurochem Int 1996, 29: 153–157.

    Article  PubMed  CAS  Google Scholar 

  77. Mayer M, Noble M. N-acetylcysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated survival in vitro. Proc Natl Acad Sci USA 1994, 91: 7596–7500.

    Article  Google Scholar 

  78. Davis S, Helfaer MA, Traystman RJ, Hum PJ. Parallel antioxidant and antiexcitotoxic therapy improves outcome after incomplete global cerebral ischemia in dogs. Stroke 1997, 28: 198–205.

    Article  PubMed  CAS  Google Scholar 

  79. Willenborg, D.O., Bowern, N.A., Danta, G. and Doherty, P.C. Inhibition of allergic encephalomyelitis by the iron chelating agent desferrioxamine:differential effect depending on the type of sensitizing encephalitogen. J Neuroimmun 1988, 17: 127–135.

    Article  CAS  Google Scholar 

  80. Ben-Shachar, D., Eshel, G., Finberg, J.P.M., and Youdim, M.B.H. The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 1991, 54: 1441–144.

    Article  Google Scholar 

  81. Keberle H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann NY Acad Sci 1964, 119: 758–768.

    Article  PubMed  CAS  Google Scholar 

  82. Oliveri NF, Buncic JR, Chew E, Gallant T, Harrison RV, Keenan N, Logan W, Mitchell D, Ricci G, Skarf B, Taylor M, Freedman MH. Visual and auditory neurotoxicity in patients receiving subcutaneous deferoxamine infusions. N Engl J Med 1986, 314: 869–873.

    Article  Google Scholar 

  83. Maruyama M, Pieper GM, Kalyanaraman B, Hallaway PE, Hedlund BE, Gross GJ. Effects on hydroxyethyl starch conjugated deferoxamine on myocardial functional recovery following coronary occlusion and reperfusion in dogs. J Cardiovas Pharm 1991, 17: 166–175.

    Article  CAS  Google Scholar 

  84. Hum PD, Koehler RC, Blizzard KK, Traystman RJ. Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs. Stroke 1995, 26: 688–694.

    Article  Google Scholar 

  85. Hider RC, Choudhury R, Rai BL, Dehkordi LS, Singh S. Design of orally active iron chelators. Acta Haematol 1996, 95: 6–12.

    Article  PubMed  CAS  Google Scholar 

  86. Dugan LL, Gabrielson JK, Yu SP, Lin TS, Choi DW. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 1996, 3(2): 129–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ratan, R.R. (1999). Antioxidants and the Treatment of Neurological Disease. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_32

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics