Skip to main content

Abstract

The medial septum (MS) is a forebrain structure that appears to integrate subcortical information about the “biological significance” of episodes or events and in turn modulate the responsiveness of the hippocampus (HPC) to its primary cortical input (i.e., entorhinal cortex). The septohippocampal pathway fine tunes the physiology of the HPC and contributes in an indispensible way to its behavioral functions. The MS also gives rise to cholinergic septocingulate and septoentorhinal pathways. The functional properties of these pathways are just starting to be addressed (see Dougherty, Turchin, and Walsh 1998). The MS and its efferent cholinergic pathways appear to be a critical neurobiological substrate of working/ episodic memory. This cognitive function (1) comprises an essential component of declarative memory, (2) it is affected very early in Alzheimer’s disease (AD), and (3) its compromise in AD appears to be dependent upon a disruption of cholinergic activity (reviewed in Walsh and Opello 1994). Understanding the contribution of the MS to workingJepisodic memory will provide a better understanding of the neural circuits, structures, and transmitters that modulate memory processes, and should also provide insights into the biology and psychology of memory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., Ishiyama, J., and Saito, H. 1992. Effects of epidermal growth factor and basic fibroblast growth factor on generation of long-term potentiation in the dentate gyrus of fimbria-fornix lesioned rats. Brain Res. 593:335–338.

    Article  CAS  PubMed  Google Scholar 

  • Abe, K., Nakata, A., Mizutani, A., and Saito, H. 1994. Facilitatory but nonessential role of the muscarinic cholinergic system in the generation of long-term potentiation of population spikes in the dentate gyrus in vivo. Neuropharmacology. 33:847–852.

    Article  CAS  PubMed  Google Scholar 

  • Allen, C.N., and Crawford, I.L. 1984. GABAergic agents in the medial septal nucleus affect hippocampal theta rhythm and acetylcholine utilization. Brain Res. 322:261–267.

    Article  CAS  PubMed  Google Scholar 

  • Amaral, D.G., and Kurz, J. 1985. An analysis of the origin of the cholinergic and non-cholinergic septal projections to the hippocampal formation of the rat. J. Comp. Neurol. 240:37–59.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, P., Bliss, T.V.P., and Skrede, K.K. 1971. Unit analysis of hippocampal population spikes. Exp. Brain Res. 13:208–221.

    CAS  PubMed  Google Scholar 

  • Baddeley, A.D. 1986. Working Memory. Oxford: Clarendon Press.

    Google Scholar 

  • Baddeley, A.D. 1996. Exploring the central executive. Qt. J. Exp. Psych. 49A:5–28.

    Google Scholar 

  • Baddeley, A.D., Bressi, S., Delia Sala, S., Logie, R., and Spinnier, H. 1991. The decline of working memory in Alzheimer’s disease. A longitudinal study. Brain. 114:2521–2542.

    Article  PubMed  Google Scholar 

  • Baddeley, A.D., Logie, R., Bressi, S., and Sala, S. 1986. Dementia and working memory. Q. J. Exp. Psych. 38:603–618.

    Article  CAS  Google Scholar 

  • Beatty, W.W., and Bierley, R.A. 1986. Scopolamine impairs encoding and retrieval of spatial working memory in rats. Physiol. Psych. 14:82–86.

    CAS  Google Scholar 

  • Ben-Ari, Y., Krnjevic, K., Reinhart, W., and Ropert, N. 1981. Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus. Neuroscience. 6:2475–2484.

    Article  CAS  PubMed  Google Scholar 

  • Bilkey, D.K., and Goddard, G.V. 1985. Medial septal facilitation of hippocampal granule cell activity is mediated by inhibition of inhibitory interneurones. Brain Res. 361:99–106.

    Article  CAS  PubMed  Google Scholar 

  • Bland, B.H. 1986. The physiology and pharmacology of hippocampal formation theta rhythms. Prog. Neurobiol. 26:1–54.

    Article  CAS  PubMed  Google Scholar 

  • Bland, B.H., and Oddie, S.C. 1998. Anatomical, electrophysiological and pharmacological studies of ascending brainstem hippocampal synchronizing pathways. Neurosci. Biobehav. Rev. 22:259–273.

    Article  CAS  PubMed  Google Scholar 

  • Chafetz, M.D., Thompson, R.G., Evans, S.H., and Gage, EH. 1981. Biochemical specificity of septal hyperreactivity: a behavioral discrimination. Behav. Brain Res. 2:409–420.

    Article  CAS  PubMed  Google Scholar 

  • Chrobak, J.J., Hanin, I., and Walsh, T.J. 1986. AF64A (ethylcholine mustard aziri-dinium ion), a cholinergic neurotoxin, selectively impairs working memory in a multiple component T-maze task. Brain Res. 414:15–21.

    Article  Google Scholar 

  • Chrobak, J.J., Stackman, R.W., and Walsh, TJ. 1989. Intraseptal administration of muscimol produces dose-dependent memory impairments in the rat. Behav. Neural Biol. 52:357–369.

    Article  CAS  PubMed  Google Scholar 

  • Chu, D.C.M., Albin, R.L., Young, A.B., and Penney, J.B. 1990. Distribution and kinetics of GABA-B bindings sites in rat central nervous system: a quantitative autora-diographic study. Neuroscience. 34:341–357.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, N.J., and Squire, L.R. 1980. Preserved learning and retention of pattern analyzing skill in amnesia: dissociation of knowing how and knowing that. Science. 210:207–209.

    Article  CAS  PubMed  Google Scholar 

  • Costa, E., Panula, P., Thompson, H.K., and Cheney, D.L. 1983. The transynaptic regulation of the septal-hippocampal cholinergic neurons. Life Sci. 32:165–179.

    Article  CAS  PubMed  Google Scholar 

  • Decker, M.W., Curzon, P., and Brioni, J.D. 1995. Influence of separate and combined septal and amygdala lesions on memory, acoustic startle, anxiety, and locomotor activity in rats. Neurobiol. Learn. Mem. 64:156–168.

    Article  CAS  PubMed  Google Scholar 

  • Dougherty, K.D., Salat, D., and Walsh, T. J. 1996. Intraseptal injection of the cholinergic immunotoxin 192-IgG saporin fails to disrupt latent inhibition in a conditioned taste aversion paradigm. Brain Res. 736:260–269.

    Article  CAS  PubMed  Google Scholar 

  • Dougherty, K.D., Turchin, P.I., and Walsh, T.J. 1998. Septocingulate and setohip-pocampal cholinergic pathways: involvement in workingJepisodic memory. Brain Res. 810:59–71.

    Article  CAS  PubMed  Google Scholar 

  • Duman, R.S., Sweetnam, P.M., Gallombardo, P.A., and Tallman, J.F. 1987. Molecular neurobiology of inhibitory amino acid receptors. Mol. Neurobiol. 1:155–189.

    Article  CAS  PubMed  Google Scholar 

  • Dutar, P., Bassant, M-H, Senut, M-C, and Lamour, Y. 1995. The septohippocampal pathway: structure and function of a central cholinergic system. Physiol. Rev. 75:393–427.

    CAS  PubMed  Google Scholar 

  • Eslinger, P.J., and Damasio, A.R. 1986. Preserved motor learning in Alzheimer’s disease: implications for anatomy and behavior. J. Neurosci. 10:3006–3009.

    Google Scholar 

  • Fadda, F., Melis, F., and Stancampianp, R. 1996. Increased hippocampal acetylcholine release during a working memory task. Eur. J. Pharmacol. 307:R1–R2.

    Article  CAS  PubMed  Google Scholar 

  • Fantie, B.D., and Goddard, G.V. 1982. Septal modulation of the population spike in the fascia dentata produced by perforant path stimulation in the rat. Brain Res. 252:227–237.

    Article  CAS  PubMed  Google Scholar 

  • File, S.E., and Pellow, S. 1987. Behavioral pharmacology of minor tranquilizers. Pharmacol. Ther. 35:265–290.

    Article  CAS  PubMed  Google Scholar 

  • Flaherty, C.F. 1990. Effect of anxiolytics and antidepressants on extinction and negative contrast. Pharmacol. Ther. 46:309–320.

    Article  CAS  PubMed  Google Scholar 

  • Foster, T.C., and Deadwyler, S.A. 1992. Acetylcholine modulates averaged sensory evoked responses and perforant path evoked field potentials in the rat dentate gyrus. Brain Res. 587:95–101.

    Article  CAS  PubMed  Google Scholar 

  • Freund, T.F., and Antal, M. 1988. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336:170–173.

    Article  CAS  PubMed  Google Scholar 

  • Frotscher, M., and Leranth, C. 1985. Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J. Comp. Neurol. 239:237–246.

    Article  CAS  PubMed  Google Scholar 

  • Frotscher, M., and Leranth, C. 1986. The cholinergic innervation of the rat fascia dentata: identification of target structures on granule cells by combining choline acetyltransferase immunocytochemistry and Golgi impregnation. J. Comp. Neurol. 243:58–70.

    Article  CAS  PubMed  Google Scholar 

  • Gaspar, P., Berger, B., Alvarez, C, Vigny, A., and Henry, J.P. 1985. Catecholaminer-gic innervation of the septal area in man: immunocytochemical study using TH and DBH antibodies. J. Comp. Neurol. 241:12–33.

    Article  CAS  PubMed  Google Scholar 

  • Gilad, G.M. 1987. The stress-induced response of the septo-hippocampal cholinergic system. A vectorial outcome of psychoneuroendocrinological interactions. Psychoneuroendocrinology. 12:167–184.

    Article  CAS  PubMed  Google Scholar 

  • Grasby, P.M., Frith, C.D., Paulesu, E., Friston, K.J., Frackowiak, R.S., and Dolan, R.J. 1995. The effect of the muscarinic antagonist scopolamine on regional cerebral blood flow during the performance of a memory task. Exp. Brain Res. 104:337–348.

    Article  CAS  PubMed  Google Scholar 

  • Gray, J.A. 1982. The neuropsychology of anxiety: an enquiry into the function of the septohippocampal system. Behav. Brain Sci. 5:469–534.

    Article  Google Scholar 

  • Greene, J.D., Baddeley, A.D., and Hodges, J.R. 1996. Analysis of the episodic memory deficit in early Alzheimer’s disease: evidence from the doors and people test. Neuropsychologia. 34:537–551.

    Article  CAS  PubMed  Google Scholar 

  • Harreil, L.E., Barlow, T.S., and Parsons, D. 1987. Cholinergic neurons, learning, and recovery of function. Behav. Neurosci. 101:644–652.

    Article  Google Scholar 

  • Herzog, C.D., Stackman, R.W., and Walsh, T.J. 1996. Intraseptal flumazenil enhances performance in a working memory task: behavioral and pharmacological specificity. Neurobiol. Learn. Mem. 66:341–352.

    Article  CAS  PubMed  Google Scholar 

  • Imperato, A., Dazzi, L., Obinu, M.C, Gessa, G.L., and Biggio, G. 1993. Inhibition of hippocampal acetylcholine release by benzodiazepines: Antagonism by flumazenil. Eur. J. Pharmacol. 238:135–137.

    Article  CAS  PubMed  Google Scholar 

  • Imperato, A., Dazzi, L., Obinu, M.C., Gessa, G.L., and Biggio, G. 1994. The benzo-diazepine receptor antagonist flumazenil increases acetylcholine release in rat hippocampus. Brain Res. 647:167–171.

    Article  CAS  PubMed  Google Scholar 

  • Kelsey, J.E., and Landry, B.A. 1988. Medial septal lesions disrupt spatial mapping ability in rats. Behav. Neurosci. 102:289–293.

    Article  CAS  PubMed  Google Scholar 

  • Kelsey, J.E., and Vargas, H. 1993. Medial septal lesions disrupt spatial, but not non-spatial, working memory in rats. Behav. Neurosci. 107:565–574.

    Article  CAS  PubMed  Google Scholar 

  • Knopman, D.S., and Nissen, M.J. 1987. Implicit learning in patients with probable Alzheimer’s disease. Neurology. 37:784–787.

    Article  CAS  PubMed  Google Scholar 

  • Knowlton, B.J., Mangels, J.A., and Squire, L.R. 1996. A neostriatal habit learning system in humans. Science. 273:1399–1402.

    Article  CAS  PubMed  Google Scholar 

  • Krnjevic, K., Reiffenstein, R.J., and Ropert, N. 1981. Disinhibitory action of acetylcholine in the rat’s hippocampus: extracellular observations. Neuroscience. 6:2465–2474.

    Article  CAS  PubMed  Google Scholar 

  • Lahtinen, H., Miettinen, R., Ylinen, A., Halonen, T, and Riekkinen, P.J. sr. 1993. Biochemical and morphological changes in the rat hippocampus following transec-tion of the fimbria-fornix. Brain Res. Bull. 31:311–318.

    Article  CAS  PubMed  Google Scholar 

  • Larson, J., Wong, D., and Lynch, G. 1986. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 368:347–350.

    Article  CAS  PubMed  Google Scholar 

  • Marston, H.M., West, H.L., Wilkinson, L.S., Everitt, B. J., and Robbins, T.W 1994. Effects of excitotoxic lesions of the septum and vertical limb nucleus of the diagonal band of Broca on conditional visual discrimination: relationship between performance and choline acetyltransferase activity in the cingulate cortex. J. Neurosci. 14:2009–2019.

    CAS  PubMed  Google Scholar 

  • Menard, J., and Treit, D. 1996. Lateral and medial septal lesions reduce anxiety in the plus-maze and probe-burying tests. Physiol. Behav. 60:845–853.

    CAS  PubMed  Google Scholar 

  • Mesulam, M.M., Mufson, E.J., Wainer, B.H., and Levy, A.I. 1983. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl-Ch6). Neuroscience. 10:1185–1201

    Article  CAS  PubMed  Google Scholar 

  • Minoshima, S., Giordani, B., Berent, S., Frey, K.A., Foster, N.L., and Kuhl, D.E. 1997. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann. Neurol. 42:85–94.

    Article  CAS  PubMed  Google Scholar 

  • Moore, J.W., and Stickney, K.J. 1980. Formation of attentional-associative networks in real time: role of the hippocampus and implications for conditioning. Physiol. Psych. 8:207–217.

    Google Scholar 

  • Muir, J.L., Dunnett, S.B., Robbins, T.W., and Everitt, B. J. 1992. Attentional functions of the forebrain cholinergic system. Exp. Brain Res. 611–622.

    Google Scholar 

  • Nissen, M.J., Knopman, D.S., and Schacter, D.L. 1987. Neurochemical dissociation of memory systems. Neurology. 37:789–794.

    Article  CAS  PubMed  Google Scholar 

  • Olton, D.S. 1983. Memory functions and the hippocampus. In Neurobiology of the Hippocampus., ed. W. Seifert, pp. 335–373. New York: Academic Press.

    Google Scholar 

  • Pesold, C., and Treit, D. 1992. Excitotoxic lesions of the septum produce anxiolytic effects in the elevated plus-maze and the shock-probe burying tests. Physiol Behav. 52:37–47.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, G.M., Williams, L.R., Varon, S., and Gage, EH. 1987. Loss of GABAergic neurons in medial septum after fimbria-fornix transection. Neurosci. Lett. 76:140–144.

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino, M.E., Unick, K.E., and Gold, P.E. 1996. Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. Proc. Natl. Acad. Sci. USA 93:4693–4698.

    Article  CAS  PubMed  Google Scholar 

  • Rashidy-Pour, A., Motamedi, F., and Motahed-Larijani, Z. 1996. Effects of reversible inactivation of the medial septal area on reference and working memory versions of the Morris water maze. Brain Res. 709:131–140.

    Article  CAS  PubMed  Google Scholar 

  • Riddle, N, O’Carroll, R.E., Dougall, N, VanBeck, M., Curran, S.M, Ebmeier, K.P., et al. 1993. A single photon emission computerized tomography study of regional function underlying verbal working memory in patients with Alzheimer-type dementia. Br. J. Psychiatr. 163:166–172.

    Article  CAS  Google Scholar 

  • Rusted, J.M., and Warburton, D.M. 1988. The effects of scopolamine on working memory in healthy young volunteers. Psychopharmacology. 96:145–152.

    CAS  PubMed  Google Scholar 

  • Sandkuhler, J., and Gebhart, G.F. 1991. Production of reversible local blockage of neuronal function. In Methods in Neurosciences., ed. M. Conn, pp. 122–138. New York: Academic Press.

    Google Scholar 

  • Sarter, M., Bruno, J.P., and Dudchenko, P. 1990. Activating the damaged basal forebrain cholinergic system: tonic stimulation versus signal amplification. Psychopharmacology. 101:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Senut, M.C., Menetrey, D., and Lamour, Y 1989. Cholinergic and peptidergic projections from the medial septum and the nucleus of the diagonal band of broca to dorsal hippocampus, cingulate cortex and olfactory bulb: a combined wheat-germ agglutinin-apo-horseradish peroxidase-gold immunohistochemical study. Neuroscience. 30:385–403.

    Article  CAS  PubMed  Google Scholar 

  • Sherry, D.F, and Schacter, D.L. 1987. The evolution of multiple memory systems. Psychol. Rev. 98:439–454.

    Article  Google Scholar 

  • Smythe, J.W., Colom, L.V., and Bland, B.H. 1992. The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABAergic medial septal inputs. Neurosci. Biobehav. Rev. 16:289–308.

    Article  CAS  PubMed  Google Scholar 

  • Springer, J.E. 1988. Nerve growth factor receptors in the central nervous system. Exp. Neurol. 102:354–365.

    Article  CAS  PubMed  Google Scholar 

  • Squire, L.R. 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99:195–231.

    Article  CAS  PubMed  Google Scholar 

  • Squire, L.R., and Zola, S.M. 1996. Structure and function of declarative and nonde-clarative memory systems. Proc. Nat. Acad. Sci. USA. 93:13512–13522.

    Article  Google Scholar 

  • Stackman, R.W., and Walsh, T.J. 1992a. Anatomical specificity and time-dependence of chlordiazepoxide-induced spatial memory impairments. Behav. Neurosci. 109:436–445.

    Article  Google Scholar 

  • Stackman, R.W., and Walsh, T.J. 1992b. Chlordiazepoxide-induced working memory impairments: site specificity and reversal by flumazenil (RO15,1788). Behav. Neural Biol. 57:233–243.

    Article  CAS  PubMed  Google Scholar 

  • Stackman, R.W., and Walsh, T.J. 1995. Distinct profile of working memory errors following acute or chronic disruption of the cholinergic septohippocampal pathway. Neurobiol. Learn. Mem. 64:226–236.

    Article  CAS  PubMed  Google Scholar 

  • Stackman, R.W., Walsh, T.J., Brucato, F., and Swartzwelder, H.S. 1996. Medial septal benzodiazepine receptors modulate hippocampal synaptic plasticity. Brain Res. 717:12–21.

    Article  CAS  PubMed  Google Scholar 

  • Swanson, L.W., and Cowan, W.M. 1979. The connections of the septal region in the rat. J. Comp. Neurol. 186:621–656.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, G.J., and Gash, D.M. 1986. Differential effects of posterior septal lesions on dispositional and representational memory. Behav. Neurosci. 100:712–719.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, G.J., and Spafford, P.S. 1984. Deficits for representational memory induced by septal and cortical lesions in rats. Behav. Neurosci. 98:394–404.

    Article  CAS  PubMed  Google Scholar 

  • Valjakka, A., Lukkarinen, K., Koivisto, E., Lammintausta, R., Airaksinen, M.M., and Riekkinen, P. 1991. Evoked field responses, recurrent inhibition, long-term potentiation and immobility-related nonrhythmical EEG in dentate gyrus of fimbria-fornix-lesioned and control rats. Brain Res. Bull. 26:525–532.

    Article  CAS  PubMed  Google Scholar 

  • Van der Zee, E.A., and Luiten, P.G.M. 1994. Cholinergic and GABAergic neurons in the rat medial septum express muscarinic acetylcholine receptors. Brain Res. 652:263–272.

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova, O.S. 1995. Expression, control, and probable functional significance of the neuronal theta-rhythm. Prog. Neurobiol. 45:523–583.

    Article  CAS  PubMed  Google Scholar 

  • Voytko, M., Olton, D.S., Richardson, R.T., Gorman, L.K., Tobin, J.R., and Price, D.L. 1994. Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J. Neurosci. 14:167–186.

    CAS  PubMed  Google Scholar 

  • Walsh, T.J. 1993. Site-specific pharmacology for the treatment of Alzheimer’s Disease. Exp. Neurol. 124:43–46.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, T.J. 1997. In vivo systems—animal models of neurological diseases. In Comprehensive Toxicology, Vol. 11., eds. K. Reuhl, and H. Lowndes, pp. 417–427 Amsterdam: Elsevier.

    Google Scholar 

  • Walsh, T.J. 1998. Models of cholinergic degeneration: AF64A and 192-IgG-saporin. In Advances in Alzheimer’s and Parkinson’s Disease., eds. A. Fisher, I. Hanin, and M. Yoshida, pp. 667–674. New York: Plenum Press.

    Google Scholar 

  • Walsh, T.J., Gandhi, C., and Stackman, R.W. 1998. Reversible inactivation of the medial septum or nucleus basalis impairs working memory: a dissociation of memory and performance. Behav. Neurosci. 112:1114–1124.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, T.J, Herzog, C.D., Gandhi, C., Stackman, R.W, and Wiley, R.G 1996. Injection of IgG 192 Saporin into the medial septum produces cholinergic hypofunction and dose dependent working memory deficits. Brain Res. 726:69–79.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, T.J, and Opello, K.D. 1994. The use of AF64A to model Alzheimer’s disease. In Toxin-Induced Models of Neurological Disorders., eds. M. Woodruff, and A. Nonneman, pp. 259–279. New York: Plenum Press.

    Google Scholar 

  • Walsh, T.J., and Stackman, R.W. 1992. Modulation of memory by benzodiazepine-acetylcholine interactions. In Neurotransmitter Interactions and Cognitive Function., eds. L.L. Butcher, M.W. Decker, and E.D. Levin, pp. 312–328. Boston: Birkhäuser.

    Chapter  Google Scholar 

  • Walsh, T.J., Stackman, R.W., Emerich, D.F., and Taylor, L.A. 1993. Intraseptal injection of GABA and benzodiazepine receptor ligands alters high-affinity choline transport in the hippocampus. Brain Res. Bull. 31:267–271.

    Article  CAS  PubMed  Google Scholar 

  • Wenk, G, Hepler, D., and Olton, D.S. 1984. Behavior alters the uptake of 3H-choline into acetylcholinergic neurons of the nucleus basalis magnocellularis and medial septal area. Behav. Brain Res. 13:129–138.

    Article  CAS  PubMed  Google Scholar 

  • Wiley, R.G. 1992. Neural lesioning with ribosome-inactivating proteins: suicide transport and immunolesioning. Trends Neurosci. 15:285–290.

    Article  CAS  PubMed  Google Scholar 

  • Woodhams, P.L., Roberts, G.W, Polak, J.M., and Crow, T.J. 1983. Distribution of neu-ropeptides in the limbic system of the rat: the bed nucleus of the stria terminalis, septum and preoptic area. Neuroscience. 8:677–693.

    Article  CAS  PubMed  Google Scholar 

  • Woolf, N.J., Gould, E., and Butcher, L.L. 1989. Nerve growth factor receptor is associated with cholinergic neurons of the basal forebrain but not the pontomesen-cephalon. Neuroscience. 30:143–152.

    Article  CAS  PubMed  Google Scholar 

  • Woolf, N.J., Jacobs, R.W., and Butcher, L.L. 1989. The pontomesencephalotegmen-tal cholinergic system does not degenerate in Alzheimer’s disease. Neurosci. Lett. 96:277–282.

    Article  CAS  PubMed  Google Scholar 

  • Young, W.S., and Kuhar, M.J. 1980. Radiohistochemical localization of benzodiazepine receptors in rat brain. J. Pharmacol. Exper. Ther. 212:337–346.

    CAS  Google Scholar 

  • Zola-Morgan, S.M., and Squire, L.R. 1990. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science. 250:288–290.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walsh, T.J. (2000). The Medial Septum and Working/Episodic Memory. In: Numan, R. (eds) The Behavioral Neuroscience of the Septal Region. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1302-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1302-4_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7086-7

  • Online ISBN: 978-1-4612-1302-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics