Skip to main content

The Measurement of Primary Production in Aquatic Ecosystems

  • Chapter
Book cover Methods in Ecosystem Science

Abstract

All biological systems exist as a result of continual inputs of energy to maintain structure and order. At the scale of the ecosystem, most of this energy comes from sunlight, which is converted into the energy of organic matter in living biomass through the process of primary production, and from imports of organic matter from adjacent ecosystems. This import of energy in organic matter is, of course, dependent upon primary production in the “upstream” ecosystem. Thus, a critical aspect of understanding the functioning of an ecosystem is an accurate estimate of its rate of primary production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoine, D.; and Morel, A. Oceanic primary production. 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochem. Cycl. 10:43–55; 1996.

    Article  CAS  Google Scholar 

  • Arîstegui, J.; Monero, M.F.; Ballesteros, S.; Basterretxea, G.; van Lenning, K. Planktonic primary production and microbial respiration measured by 14C assimilation and dissolved oxygen changes in coastal waters of the Antarctic peninsula during austral summer: Implications for carbon flux studies. Mar. Ecol. Prog. Ser. 132:191–201; 1996.

    Article  Google Scholar 

  • Balch, W.M., Evans, R.; Brown, J.; Feldman, G.; McClain, C.; W. Esaias, W. The remote sensing of ocean primary productivity—the use of a new data compilation to test satellite algorithms. J. Geophys. Res. 97:2279–2293; 1992.

    Article  Google Scholar 

  • Behrenfeld, M.J.; and Falkowski, P.G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42:1–20; 1997.

    Article  CAS  Google Scholar 

  • Bender, M.; Grande, K.; Johnson, K.; Marra, J.; Williams, P.J.L.; Sieburth, J.; Milson, M.; Langdon, C.; Hitchock, G.; Orchardo, J.; Hunt, C.; Donaghay, P.; Heinemann, K. A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32:1085–1098; 1987.

    Article  Google Scholar 

  • Bennet, J.P.; Rathbun, R.E. Reaeration in Open-Channel Flow. U.S. Geological Survey (USGS) Paper 737. Washington, DC: U.S. Government Printing Office; 1972.

    Google Scholar 

  • Bidigare, R.R.; Prézelin, B.B.; and Smith, R.C. Bio-optical models and the problems of scaling. In: Falkowski, P.B.; Woodhead, A.D., eds. Primary Productivity and Biogeochemical Cycles in the Sea. New York: Plenum; 1992:175–212.

    Google Scholar 

  • Bower, P.M.; Kelly, C.A.; Fee, F.J.; Shearer, J.A.; De-Clercq, D.R.; Schindler, D.W. Simultaneous measurement of primary production by whole-lake and bottle radiocarbon additions. Limnol. Oceanogr. 32:299–312; 1987.

    Article  CAS  Google Scholar 

  • Boyle, E.A.; Huested, S.S.; Jones, S.P. On the distribution of Cu, Ni, and Cd in the surface waters of the North Atlantic and North Pacific Oceans. J. Geophys. Res. 86:8048–8066; 1981.

    Article  CAS  Google Scholar 

  • Bruland, K.W Oceanographic distributions of cadmium, zinc, nickel and copper in the North Pacific. Earth Planet. Sci. Lett. 47:176–198; 1980.

    Article  CAS  Google Scholar 

  • Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Applic. 8:559–568; 1998.

    Article  Google Scholar 

  • Cole, J.J.; Caraco, N.F.; Peierls, B. Phytoplankton primary production in the tidal, freshwater Hudson River, New York (USA). Verh. Int. Verein. Limnol. 24:1715–1719; 1991.

    Google Scholar 

  • Cole, J.J.; Caraco, N.F., Peierls, B. Can phytoplankton maintain a positive carbon balance in a turbid, freshwater, tidal estuary? Limnol. Oceanogr. 37:1608–1617; 1992.

    Article  CAS  Google Scholar 

  • Collos, Y.; Descolas-Gros, C.; Fontugne, M.; Mortain-Bertrand, A.; Chretiennot-Dinet, M.J.; Frikha, M.G. Chemical, isotopic and enzymatic monitoring of free and enclosed seawater: implications for primary production estimates in incubation bottles. Mar. Ecol. Prog. Ser. 93:49–54; 1993.

    Article  CAS  Google Scholar 

  • Durand, M.D.; Olson, R.J. Contributions of phytoplankton light-scattering and cell concentration changes to diel variations in beam attenuation in the equatorial Pacific from flow cytometric measurements of pico-plankton, ultraplankton and nanoplankton. Deep-Sea Res. 43:891–906; 1996.

    Article  Google Scholar 

  • Edwards, R.W.; Owens, M. The effects of plants on river conditions. IV. The oxygen balance of a chalk stream. J. Ecol. 50:207–220; 1962.

    Article  Google Scholar 

  • Falkowski, P.G.; LaRoche, J. Acclimation to spectral irradiance in algae. J. Phycol. 27:8–14; 1991.

    Article  Google Scholar 

  • Fee, E.J. Modeling primary production in water bodies: A numerical approach that allows vertical inhomogeneities. J. Fish. Res. Bd. Can. 30:513–522; 1973.

    Google Scholar 

  • Fee, E.J. Important factors for estimating annual phytoplankton production in the Experimental Lakes Area. Can. J. Fish. Aquat. Sci. 37:513–522; 1980.

    Article  Google Scholar 

  • Fitzwater, S.E.; Knauer, G.A.; Martin, J.H. Metal contamination and its effect on primary production measurement. Limnol. Oceanogr. 27:544–551; 1982.

    Article  CAS  Google Scholar 

  • Gaarder, T.; Gran, H.H. Investigation of the production of plankton in the Oslo Fjord. Rapp. P.-v. Cons. Int. Explor. Mer. 42:1–48; 1927.

    Google Scholar 

  • Gallegos, C.L.; Platt, T. Photosynthesis measurements on natural populations of phytoplankton: Numerical analysis. Can. Bull. Fish. Aquat. Sci. 210:103–112; 1981.

    Google Scholar 

  • Gardner, W.D. Incomplete extraction of rapidly settling particles from water samplers. Limnol. Oceanogr. 22:764–768; 1977.

    Article  Google Scholar 

  • Garver, S.A.; Siegel, D.A. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea. J. Geophys. Res. Oceans 102:18607–18625; 1997.

    Article  CAS  Google Scholar 

  • Gordon, H.R.; Morel, A.Y. Remote assessment of ocean colour for interpretation of satellite visible imagery: A review. Lecture Notes on Coastal and Estuarine Studies, 4. New York: Springer-Verlag; 1983.

    Google Scholar 

  • Hesslein, R.H.; Broecker, W.S.; Quay, P.D. Whole-lake radiocarbon experiment in an oligotrophic lake at the Experimental Lakes Area, northwestern Ontario. Can. J. Fish. Aquat. Sci. 37:454–463; 1980.

    Article  CAS  Google Scholar 

  • Howarth, R.W.; Marino, R.; Garritt, R.; Sherman, D. Ecosystem respiration and organic carbon processing in a large, tidally influenced river: The Hudson River. Biogeochem. 16:83–102; 1992.

    Article  CAS  Google Scholar 

  • Howarth, R.W.; Schneider, R.; Swaney, D. Metabolism and organic carbon fluxes in the tidal freshwater Hudson River. Estuaries 19:848–865; 1996.

    Article  CAS  Google Scholar 

  • Jirka, G.A.; Brutsaert, W. Measurements of wind effects on water-side controlled gas exchange in riverine systems. In: Brutsaert, W; Jirka, G.H., eds. Gas Transfer at Water Surfaces. Dordrecht: Reidel; 1984: 437–446.

    Google Scholar 

  • Kemp, W.M.; Boynton, W.R. Influence of biological and physical process on dissolved oxygen dynamics in an estuarine system: Implication for measurement of community metabolism. Est. Coast. Mar. Sci. 11:407–431; 1980.

    Article  Google Scholar 

  • Kremer, J.N.; Reischauer, A.; D’Avanzo, C. Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries, submitted; 1999.

    Google Scholar 

  • Lewis, W.M. Primary production in the Orinoco River. Ecology 69:679–692; 1988.

    Article  Google Scholar 

  • Li, W.K.W; Maestrini, S.Y., eds. Measurement of Primary Production from the Molecular to the Global Scale. ICES Symposium Vol. 197. Copenhagen: ICES Secretariat; 1993.

    Google Scholar 

  • Lohrenz, S.E.; Wiesenburg, D.A.; Rein, C.R.; Arnone, R.A.; Taylor, C.D.; Knauer, G.A.; Knap, A.H. A comparison of in situ and simulated in situ methods for estimating oceanic primary production. J. Plank. Res. 14:201–221; 1992.

    Article  Google Scholar 

  • Marino, R.; Howarth, R.W. Atmospheric oxygen exchange in the Hudson River: Dome measurements and comparison with other natural waters. Estuaries 16:433–445; 1993.

    Article  CAS  Google Scholar 

  • Martin, J.H.; Gordon, R.M.; Fitzwater, S.; Broenkow, W.W. VERTEX: Phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res. 36:649–680; 1989.

    Article  CAS  Google Scholar 

  • Michaels, A.F.; Knap, A.H. Overview of the U.S. JGOFS Bermuda Atlantic Time-series Study and the Hydro-station S Program. Deep-Sea Res. II 43:157–198; 1996.

    Article  CAS  Google Scholar 

  • McClain, C.R.; Cleave, M.L.; Feldman, G.C.; Gregg, W.W.; Hooker, S.B.; Kuring, N. Science Quality SeaWiFS Data for Global Biosphere Research. Sea Technol. September:10–16; 1998.

    Google Scholar 

  • [NRC] National Research Council. Managing Waste-water in Coastal Urban Areas. Washington, DC: National Academy; 1993.

    Google Scholar 

  • Nixon, S.W.; Ammerman, J.W.; Atkinson, P.; Berounsky, V.M.; Billen, G.; Boicourt, W.C.; Boynton, W.R.; Church, T.M.; DiToro, D.M.; Elmgren, R.; Garber, J.H.; Giblin, A.E.; Jahnke, R.A.; Owens, N.J.P.; Pilson, M.E.Q.; Seitzinger, S.P. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochem. 35:141–180; 1996.

    Article  CAS  Google Scholar 

  • Nixon, S.W.; Oviatt, C.A. Preliminary measurements of midsummer metabolism in beds of eelgrass, Zostera marina. Ecology 53:150–153; 1972.

    Article  Google Scholar 

  • Nixon, S.W.; Oviatt, C.A.; Buckley, B.A. Turbulent mixing in mesocosms—some relative measures and ecological consequences. In: Jacoff, F.S. ed. Advances in Marine Environmental Research. U.S. Environmental Protection Agency (EPA) Report EPA-600/9-79-035. Narragansett, RI: US EPA; 1979:382–409.

    Google Scholar 

  • O’Connor, D.J. Turbulent transfer across smooth and rough surfaces. In: Brutsaert, W.; Jirka, G.H., eds. Gas Transfer at Water Surfaces; Dordrecht: Reidel; 1984:321–331.

    Google Scholar 

  • O’Connor, D.J.; Dobbins, W.E. Mechanism of reaeration in natural streams. Am. Soc. Civ. Eng. Trans. 123:641–684; 1958.

    Google Scholar 

  • Odum, H.T. Primary production in flowing waters. Limnol. Oceanogr. 1:102–117; 1956.

    Article  Google Scholar 

  • OReilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Oceans 103:24937–24953; 1998.

    Article  Google Scholar 

  • Oviatt, C.A.; Rudnick, D.T.; Keller, A.A.; Sampou, P.A.; Almquist, G.T. A comparison of system (O2 and CO2) and C-14 measurements of metabolism in estuarine mesocosms. Mar. Ecol. Prog. Ser. 28:57–67; 1986.

    Article  CAS  Google Scholar 

  • Owens, M. Some factors involved in the use of dissolved-oxygen distributions in streams to determine productivity. In: Goldman, C.R., ed. Primary Productivity in Aquatic Environments. Berkeley, CA: Univ. of California Pr.; 1969.

    Google Scholar 

  • Peterson, B.J. Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem. Annu. Rev. Ecol. Syst. 11:359–385; 1980.

    Article  Google Scholar 

  • Platt, T.; Caverhill, C.M.; Sathyendranath, S. Basin-scale estimates of oceanic primary production by remote sensing: The North Atlantic. J. Geophys. Res. 96:15147–15159; 1991.

    Article  Google Scholar 

  • Platt, T. Harrison, W.G. Reconciliation of carbon and oxygen fluxes in the upper ocean. Deep-Sea Res. 33:273–276; 1986.

    Article  Google Scholar 

  • Raine, R.C.T. The effects of nitrogen supply on the photosynthetic quotient of natural phytoplankton assem-plages Botanica Marina 26:417–423; 1983.

    Article  CAS  Google Scholar 

  • Raven, J.A.; Beardall, J. Respiration and photorespiration. Can. Bull. Fish. Aquat. Sci. 210:55–82; 1981.

    Google Scholar 

  • Richey, J.E.; Devol, A.H., Hedges, J.I., Forsber, B.R.; Victoria, R.L.; Martinellis, L.A.; Ribeiro, N. Distributions and flux of carbon in the Amazon River. Limnol. Oceanogr. 35:352–371; 1990.

    Article  CAS  Google Scholar 

  • Roberts, P.V. Dependence of oxygen transfer rate on energy dissipation during surface aeration and in stream flow. In: Brutsaert, W; Jirka, G.H., eds. Gas Transfer at Water Surfaces. Dordrecht: Reidel; 1984.

    Google Scholar 

  • Ryther, J.H. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr. 1:61–70; 1956.

    Article  Google Scholar 

  • Sakshaug, E.; Bricaud, A.; Dandonneau, Y.; Falkowski, P.G.; Kiefer, D.A.; Legendre, L.; Morel, A.; Parslow, J.; Takahaski, M. Parameters of photosynthesis: Definitions, theory, and interpretation of results. J. Plank. Res. 19:1637–1670; 1997.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K.; Krause-Jensen, D. Broad-scale comparison of photosynthesis in terrestrial and aquatic plant communities. Oikos 80:203–208; 1997.

    Article  Google Scholar 

  • Siegel, D.A.; Dickey, T.D.; Washburn, L.; Hamilton, M.K. Mitchell, B.G. Optical determination of particulate abundance and production variations in the oligotrophic ocean. Deep-Sea Res. 36:211–222; 1989.

    Article  CAS  Google Scholar 

  • Siegel, D.; Michaels, A.F.; Sorensen, J.C.; O’Brien, M.C.; Hammer, M. Seasonal variability of light availability and its utilization in the Sargasso Sea. J. Geophys. Res. 100:8695–8713; 1995.

    Article  Google Scholar 

  • Steeman Nielsen, E. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Int. Explor. Mer. 18:117–140; 1952.

    Google Scholar 

  • Sverdrup, H.U. On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer. 18:287–296; 1953.

    Google Scholar 

  • Swaney, D.P.; Howarth, R.W; Butler, T.J. A novel approach for estimating ecosystem production and respiration in estuaries: Application to the oligohaline and mesohaline Hudson River estuary. Limnol. Oceanogr. 44:1509–1521; 1999.

    Article  CAS  Google Scholar 

  • Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Applic. 7:737–750; 1997.

    Google Scholar 

  • Walsh, I.D.; Chung, S.P., Richardson, M.J.; Gardner, W.D. The diel cycle in the integrated particle load in the Equatorial Pacific: A comparison with primary production. Deep-Sea Res. 42:465–477; 1995.

    Article  CAS  Google Scholar 

  • Williams, P.J.L.; Jenkinson, N.W A transportable microprocessor-controlled precise Winkler titration suitable for field station and shipboard use. Limnol. Oceanogr. 27:576–584; 1982.

    Article  CAS  Google Scholar 

  • Wofsy, S.C. A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters. Limnol. Oceanogr. 28:1144–1155; 1983.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Howarth, R.W., Michaels, A.F. (2000). The Measurement of Primary Production in Aquatic Ecosystems. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics