Skip to main content

Integrable Highest Weight Modules over Affine Superalgebras and Number Theory

  • Chapter
Lie Theory and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 123))

Abstract

The problem of representing an integer as a sum of squares of integers has had a long history. One of the first after antiquity was A. Girard who in 1632 conjectured that an odd prime p can be represented as a sum of two squares iff p ≡ 1 mod 4, and P. Fermat in 1641 gave an “irrefutable proof” of this conjecture. The subsequent work on this problem culminated in papers by A.M. Legendre (1798) and C.F. Gauss (1801) who found explicit formulas for the number of representations of an integer as a sum of two squares. C.G. Bachet in 1621 conjectured that any positive integer can be represented as a sum of four squares of integers, and it took efforts of many mathematicians for about 150 years before J.-L. Lagrange gave a proof of this conjecture in 1770.

Supported in part by NSF grant DMS-9103792.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. N. Bernstein and D.A. Leites, Character formulae for irreducible representations of Lie superalgebras of series gl and sl, C.R. Acad. Bulg. Sci 33 (1980), 1049–51.

    MathSciNet  Google Scholar 

  2. V.K. Dobrev, Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras, Phys. Lett. 186B (1987), 43–51.

    MathSciNet  Google Scholar 

  3. N.J. Fine, Some basic hypergeometric series and applications, Math. Surveys 27, 1988, AMS, Providence.

    Google Scholar 

  4. D. Hickerson, A proof of the mock theta conjectures, Invent. Math. 94 (1988), 639–660.

    Article  MathSciNet  MATH  Google Scholar 

  5. C.G.J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Crelle J. (1829), 55–239.

    Google Scholar 

  6. J. Van der Jeugt, J.W.B. Hughes, R.C. King and J. Thierry-Mieg, Character formulae for irreducible modules of the Lie superalgebra sl(m/n), J. Math. Phys. 31 (1990), 2278–.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Van der Jeugt, J.W.B. Hughes, R.C. King and J. Thierry-Mieg, A character formula for singly atypical modules of the Lie superalgebra sl(m/n), Comm. Alg. 18 (1990), 3453–3480.

    Article  MATH  Google Scholar 

  8. V.G. Kac, Infinite-dimensional Lie algebras and Dedekind’s η-function, Funct. Analis i ego Prilozh. 8 (1974), No. 1, 77–78.

    Google Scholar 

  9. V.G. Kac, Infinite-dimensional Lie algebras and Dedekind’s η-function, Funct. Anal. Appl. 8 (1974), 68–70.

    Article  MATH  Google Scholar 

  10. V.G. Kac, Lie superalgebras, Advances in Math. 26, No. 1 (1977), 8–96.

    Article  MathSciNet  MATH  Google Scholar 

  11. V.G. Kac, Characters of typical representations of classical Lie superalgebras, Comm. Alg. 5 (1977), 889–897.

    Article  MATH  Google Scholar 

  12. V.G. Kac, Representations of classical Lie superalgebras, Lect. Notes Math. 676, Springer-Verlag (1978), 597–626.

    Google Scholar 

  13. V.G. Kac, Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the very strange formula, Advances in Math. 30 (1978), 85–136.

    Article  MATH  Google Scholar 

  14. V.G. Kac, Contravariant form for infinite-dimensional Lie algebras and superalgebras, in Lecture Notes in Physics 94, Springer-Verlag (1979) 441–445.

    Google Scholar 

  15. V.G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Natl. Acad. Sci. USA 81 (1984), 645–647.

    Article  MATH  Google Scholar 

  16. V.G. Kac, Highest weight representations of conformal current algebras, Symposium on Topological and Geometrical methods in Field theory, Espoo, Finland, 1986. World. Sci., 1986, 3–16.

    Google Scholar 

  17. V.G. Kac, Infinite-dimensional Lie algrebras, 3rd edition, Cambridge University Press, 1990.

    Book  Google Scholar 

  18. V.G. Kac, J. van de Leur, Super boson-fermion correspondence, Ann. d’Institute Fourier 37 (1987), 99–137.

    Article  MATH  Google Scholar 

  19. V.G. Kac, D.H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Advances in Math. 53 (1984) 125–264.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Kostant, On Macdonald’s η-function formula, the Laplacian and generalized exponents, Advances in Math. 20 (1976) 179–212.

    Article  MathSciNet  MATH  Google Scholar 

  21. I.G. Macdonald, Affine root systems and Dedekind’s η-function, Invent Math. 15 (1972) 91–143.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Matsuo, Character formula of c < 1 unitary representation of N = 2 superconformal algebra, Prog. Theor. Phys. 77 (1987), 793–797.

    Article  MathSciNet  Google Scholar 

  23. I. Penkov, Generic representation of classical Lie superalgebras and their localization, Monatshefte für Math. (1994).

    Google Scholar 

  24. I. Penkov, V. Serganova, Cohomology of G/P for classical Lie supergroups and characters of some atypical G-modules, Ann. Inst. Fourier 39 (1989), 845–873.

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Penkov, V. Serganova, Representations of classical Lie superalgebras of type I, Indag. Math N.S.3(4) (1992), 419–466.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Ravanini, S.-K. Yang, Modular invariance in N = 2 superconformal field theories, Phys. Lett. 195B (1987), 202–208.

    MathSciNet  Google Scholar 

  27. V. Serganova, Kazhdan-Lusztig polynomials for the Lie superalgebras GL(m/n) Adv. Sov. Math. 16, part 2 (1993), 151–165.

    MathSciNet  Google Scholar 

  28. A. Sergeev, Tensor algebra of the defining representation as the module over Lie superalgebras gl(m,n) and Q(n), Math. USSR, Sbomik 51 (1985), 419–424.

    Article  MATH  Google Scholar 

  29. J. Thierry-Mieg, Table des representations irreducibles des superalgebras de Lie, unpublished (1983).

    Google Scholar 

  30. J. Thierry-Mieg, Irreducible representations of the basic classical Lie superalgebras SU(m/n), SU(n/n)/ U(l), OSp(m/2n), D(2/l, α), G(3) and F(4), Lect. Notes in Physics 201, eds. G. Denardo, G. Ghirardi and T. Weber, Springer, Berlin, 94–98.

    Google Scholar 

  31. J. Van der Jeugt, Irreducible representations of the exceptional Lie superalgebras D(2,1: α), J. Math. Phys. 26 (1985), 913–924.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Van der Jeugt, Character formulae for the Lie super algebra C(n), Comm. Alg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kac, V.G., Wakimoto, M. (1994). Integrable Highest Weight Modules over Affine Superalgebras and Number Theory. In: Brylinski, JL., Brylinski, R., Guillemin, V., Kac, V. (eds) Lie Theory and Geometry. Progress in Mathematics, vol 123. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0261-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0261-5_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6685-3

  • Online ISBN: 978-1-4612-0261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics