Skip to main content

Gene-Environment Interactions in Human Health

  • Chapter
Environmental Epigenetics

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Risk of most complex diseases is determined by a combination of environmental and genetic factors. By studying gene-environment interactions, it may be possible to describe disease mechanisms, discover novel genetic variants associated with disease, better understand heterogeneity between populations, identify populations with higher risk from exposure, and target preventive and therapeutic interventions. However, there are several challenges to the study of gene-environment interactions. As technologies and analytical tools improve, opportunities to better understand the complex interplay between genes and environment may result in improved insights in disease and treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alberg AJ, Brock MV, Samet JM (2005) Epidemiology of lung cancer: looking to the future. J Clin Oncol 23(14):3175–3185

    Article  PubMed  Google Scholar 

  • Albert PS et al (2001) Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol 154(8):687–693

    Article  CAS  PubMed  Google Scholar 

  • Austin MA (ed) (2013) Genetic epidemiology: methods and applications, 1st edn. CABI, Wallingford

    Google Scholar 

  • Balshaw DM, Kwok RK (2012) Innovative methods for improving measures of the personal environment. Am J Prev Med 42(5):558–559

    Article  PubMed  Google Scholar 

  • Bjornsson HT, Fallin MD, Feinberg AP (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20(8):350–358

    Article  CAS  PubMed  Google Scholar 

  • Bookman EB et al (2011) Gene-environment interplay in common complex diseases: forging an integrative model—recommendations from an NIH workshop. Genet Epidemiol 35(4):217–225

    PubMed Central  PubMed  Google Scholar 

  • Botto LD, Khoury MJ (2001) Commentary: facing the challenge of gene-environment interaction: the two-by-four table and beyond. Am J Epidemiol 153(10):1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Burton PR, Tobin MD, Hopper JL (2005) Key concepts in genetic epidemiology. Lancet 366(9489):941–951

    Article  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615

    Article  Google Scholar 

  • Chanock SJ et al (2007) Replicating genotype-phenotype associations. Nature 447(7145):655–660

    Article  CAS  PubMed  Google Scholar 

  • Chung CC, Chanock SJ (2011) Current status of genome-wide association studies in cancer. Hum Genet 130(1):59–78

    Article  PubMed  Google Scholar 

  • Churchill GA et al (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36(11):1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11(20):2463–2468

    Article  CAS  PubMed  Google Scholar 

  • Cornelis MC et al (2012) Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Am J Epidemiol 175(3):191–202

    Article  PubMed Central  PubMed  Google Scholar 

  • Cortessis VK et al (2012) Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet 131(10):1565–1589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dempfle A et al (2008) Gene-environment interactions for complex traits: definitions, methodological requirements and challenges. Eur J Hum Genet 16(10):1164–1172

    Article  CAS  PubMed  Google Scholar 

  • DiGiovanna JJ, Kraemer KH (2012) Shining a light on xeroderma pigmentosum. J Invest Dermatol 132(3):785–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eichler EE et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11(6):446–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foley DL et al (2009) Prospects for epigenetic epidemiology. Am J Epidemiol 169(4):389–400

    Article  PubMed Central  PubMed  Google Scholar 

  • Fong PC et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Closas et al (1999) Am J Epidemiol 149:689–693

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Closas M et al (2013) Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer. Cancer Res 73(7):2211–2220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordis L (2000) Epidemiology, 2nd edn. W.B. Saunders Company, Philadelphia, p 307

    Google Scholar 

  • Haiman CA et al (2013) Genome-wide testing of putative functional exonic variants in relationship with breast and prostate cancer risk in a multiethnic population. PLoS Genet 9(3):e1003419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363(4):301–304

    Article  CAS  PubMed  Google Scholar 

  • Hamza et al (2011) Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet 7(8):e1002237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hancock DB et al (2012) Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function. PLoS Genet 8(12):e1003098

    Article  PubMed Central  PubMed  Google Scholar 

  • Hertz DL, McLeod HL (2013) Use of pharmacogenetics for predicting cancer prognosis and treatment exposure, response and toxicity. J Hum Genet 58(6):346–352

    Article  CAS  PubMed  Google Scholar 

  • Hindorff LA et al (2014) A catalog of published Genome-Wide Association Studies. [cited 18 Feb 2014]

    Google Scholar 

  • Huang Y et al (2011) Genetic variants in the MRPS30 region and postmenopausal breast cancer risk. Genome Med 3(6):42

    Article  PubMed Central  PubMed  Google Scholar 

  • Hutter CM et al (2013) Gene-environment interactions in cancer epidemiology: a national cancer institute think tank report. Genet Epidemiol 37(7):643–657

    Article  PubMed Central  PubMed  Google Scholar 

  • Innocenti F, Cox NJ, Dolan ME (2011) The use of genomic information to optimize cancer chemotherapy. Semin Oncol 38(2):186–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • International HapMap Consortium et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861

    Article  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262

    Article  CAS  PubMed  Google Scholar 

  • Kadlubar FF, Badawi AF (1995) Genetic susceptibility and carcinogen-DNA adduct formation in human urinary bladder carcinogenesis. Toxicol Lett 82–83:627–632

    Article  PubMed  Google Scholar 

  • Kauffmann F, Demenais F (2012) Gene-environment interactions in asthma and allergic diseases: challenges and perspectives. J Allergy Clin Immunol 130(6):1229–1240, quiz 1241-2

    Article  PubMed  Google Scholar 

  • Khoury MJ, Wacholder S (2009) Invited commentary: from genome-wide association studies to gene-environment-wide interaction studies—challenges and opportunities. Am J Epidemiol 169(2):227–230

    Article  PubMed Central  PubMed  Google Scholar 

  • Knol MJ et al (2011) Estimating measures of interaction on an additive scale for preventive exposures. Eur J Epidemiol 26(6):433–438

    Article  PubMed Central  PubMed  Google Scholar 

  • Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470(7333):187–197

    Article  CAS  PubMed  Google Scholar 

  • Liu CY et al (2012) Design and analysis issues in gene and environment studies. Environ Health 11(93):93

    Article  PubMed Central  PubMed  Google Scholar 

  • Manning AK et al (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44(6):659–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manolio TA et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mechanic LE et al (2012) Next generation analytic tools for large scale genetic epidemiology studies of complex diseases. Genet Epidemiol 36(1):22–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer UA (2004) Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 5(9):669–676

    Article  CAS  PubMed  Google Scholar 

  • Meyer UA, Zanger UM (1997) Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 37:269–296

    Article  CAS  PubMed  Google Scholar 

  • Mitsudomi T, Kosaka T, Yatabe Y (2006) Biological and clinical implications of EGFR mutations in lung cancer. Int J Clin Oncol 11(3):190–198

    Article  CAS  PubMed  Google Scholar 

  • Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 27(6):637–646

    Article  CAS  PubMed  Google Scholar 

  • Moore SC et al (2012) Common genetic variants and central adiposity among Asian-Indians. Obesity 20(9):1902–1908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukherjee B et al (2012) Testing gene-environment interaction in large-scale case-control association studies: possible choices and comparisons. Am J Epidemiol 175(3):177–190

    Article  PubMed Central  PubMed  Google Scholar 

  • National Institutes of Health Consensus Development Panel (2001) National institutes of health consensus development conference statement: phenylketonuria: screening and management, October 16–18, 2000. Pediatrics 108(4):972–982

    Article  Google Scholar 

  • O’Huallachain M et al (2012) Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci U S A 109(44):18018–18023

    Article  PubMed Central  PubMed  Google Scholar 

  • Piegorsch WW, Weinberg CR, Taylor JA (1994) Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Stat Med 13(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Plenge RM, Scolnick EM, Altshuler D (2013) Validating therapeutic targets through human genetics. Nat Rev Drug Discov 12(8):581–594

    Article  CAS  PubMed  Google Scholar 

  • Poduri A et al (2013) Somatic mutation, genomic variation, and neurological disease. Science 341(6141):1237758

    Article  PubMed Central  PubMed  Google Scholar 

  • Price AL et al (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11(7):459–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman N (2014) Realizing the promise of cancer predisposition genes. Nature 505(7483):302–308

    Article  CAS  PubMed  Google Scholar 

  • Rappaport SM (2011) Implications of the exposome for exposure science. J Expos Sci Environ Epidemiol 21(1):5–9

    Article  CAS  Google Scholar 

  • Rothman KJ, Greenland S (1998) Modern epidemiology. Lippincott Williams & Wilkins, Philadelphia, p 738

    Google Scholar 

  • Rothman KJ, Greenland S, Walker AM (1980) Concepts of interaction. Am J Epidemiol 112(4):467–470

    CAS  PubMed  Google Scholar 

  • Shi M, Umbach DM, Weinberg CR (2011) Family-based gene-by-environment interaction studies: revelations and remedies. Epidemiology 22(3):400–407

    Article  PubMed Central  PubMed  Google Scholar 

  • Siemiatycki J, Thomas DC (1981) Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol 10(4):383–387

    Article  CAS  PubMed  Google Scholar 

  • Smith PG, Day NE (1984) The design of case-control studies: the influence of confounding and interaction effects. Int J Epidemiol 13(3):356–365

    Article  CAS  PubMed  Google Scholar 

  • Spiegelman D (2010) Approaches to uncertainty in exposure assessment in environmental epidemiology. Annu Rev Public Health 31:149–163

    Article  PubMed Central  PubMed  Google Scholar 

  • The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65

    Article  PubMed Central  Google Scholar 

  • Thomas D (2004) Statistical methods in genetic epidemiology. Oxford University Press, New York

    Google Scholar 

  • Thomas D (2010) Gene–environment-wide association studies: emerging approaches. Nat Rev Genet 11(4):259–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas DC et al (2012) Invited commentary: GE-whiz! ratcheting gene-environment studies up to the whole genome and the whole exposome. Am J Epidemiol 175(3):203–207

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson WD (1991) Effect modification and the limits of biological inference from epidemiologic data. J Clin Epidemiol 44(3):221–232

    Article  CAS  PubMed  Google Scholar 

  • Turek-Plewa J, Jagodzinski PP (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 10(4):631–647

    CAS  PubMed  Google Scholar 

  • VanderWeele TJ (2011) A word and that to which it once referred assessing “biologic” interaction. Epidemiology 22(4):612–613

    Article  PubMed  Google Scholar 

  • VanderWeele TJ, Vansteelandt S (2014) Invited commentary: some advantages of the relative excess risk due to interaction (RERI)–towards better estimators of additive interaction. Am J Epidemiol 179(6):670–671

    Article  PubMed Central  PubMed  Google Scholar 

  • Veeck J et al (2010) BRCA1 CpG island hypermethylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors. J Clin Oncol 28(29):e563–e564, author reply e565–566

    Article  PubMed  Google Scholar 

  • Vineis P, Perera F (2007) Molecular epidemiology and biomarkers in etiologic cancer research: the new in light of the old. Cancer Epidemiol Biomarkers Prev 16(10):1954–1965

    Article  CAS  PubMed  Google Scholar 

  • Weinberg CR (2012) Interaction and exposure modification: are we asking the right questions? Am J Epidemiol 175(7):602–605

    Article  PubMed Central  PubMed  Google Scholar 

  • Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 14(8):1847–1850

    Article  CAS  PubMed  Google Scholar 

  • Wild CP (2012) The exposome: from concept to utility. Int J Epidemiol 41(1):24–32

    Article  PubMed  Google Scholar 

  • Witte JS, Gauderman WJ, Thomas DC (1999) Asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs. Am J Epidemiol 149(8):693–705

    Article  CAS  PubMed  Google Scholar 

  • Wu C et al (2012) Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet 44(10):1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Zanger UM, Raimundo S, Eichelbaum M (2004) Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 369(1):23–37

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Dolan ME (2010) Impact of the 1000 genomes project on the next wave of pharmacogenomic discovery. Pharmacogenomics 11(2):249–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zuk O et al (2014) Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A 111(4):E455–E464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah E. Mechanic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Mechanic, L.E., Hutter, C.M. (2015). Gene-Environment Interactions in Human Health. In: Su, L., Chiang, Tc. (eds) Environmental Epigenetics. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6678-8_10

Download citation

Publish with us

Policies and ethics