Skip to main content

Neuroferritinopathy

  • Chapter
  • First Online:
Chorea

Abstract

Neuroferritinopathy is an autosomal-dominant neurodegenerative disorder caused by mutations in the ferritin light chain gene (FTL). The disease is clinically present during adulthood with movement disorders mainly with chorea, dystonia, and parkinsonism and progresses slowly over decades. Cognitive symptoms are often noted after motor signs. On brain magnetic resonance imaging (MRI), the findings are iron deposits in the basal ganglia and cavitation. Neuronal loss in the cerebral cortex, cerebellum, and basal ganglia has been demonstrated in neuropathological studies as well as ferritin inclusion bodies, shown within neurons and glia. As neuroferritinopathy is considered as one of several of neurodegenerative diseases with brain iron accumulation (NBIA), the main differential diagnosis of this disorder is with the other diseases found in this group and with Huntington’s disease. There is no specific treatment to modify the progression of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vidal R, Ghetti B, Takao M, et al. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol. 2004;63:363–80.

    CAS  PubMed  Google Scholar 

  2. Curtis AR, Fey C, Morris CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult onset basal ganglia disease. Nat Genet. 2001;28:350–4.

    Article  CAS  PubMed  Google Scholar 

  3. Schneider SA, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation. Semin Pediatr Neurol. 2012;19(2):57–66.

    Article  PubMed  Google Scholar 

  4. McNeill A, Birchall D, Hayflick SJ, et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology. 2008;70:1614–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hautot D, Pankhurst QA, Morris CM, et al. Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim Biophys Acta. 2007;1772:21–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mancuso M, Davidzon G, Kurlan RM, Tawil R, Bonilla E, Di Mauro S, Powers JM. Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. J Neuropathol Exp Neurol. 2005;64(4):280–94.

    CAS  PubMed  Google Scholar 

  7. Chinnery PF, Crompton DE, Birchall D, et al. The clinical features and natural history of neuroferritinopathy caused by the FTL1 460insA mutation. Brain. 2007;130:110–9.

    Article  PubMed  Google Scholar 

  8. Devos D, Tchofo J, Vuillaume I, et al. Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation. Brain. 2009;132:e109.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ohta E, Nagasaka T, Shindo K, et al. Neuroferritinopathy in a Japanese family with a duplication in the ferritin light chain gene. Neurology. 2008;70:1493–4.

    Article  CAS  PubMed  Google Scholar 

  10. Kubota A, Hida A, Ichikawa Y, et al. A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype-phenotype correlations. Mov Disord. 2009;24:441–5.

    Article  PubMed  Google Scholar 

  11. Maciel P, Cruz VT, Constante M, et al. Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement. Neurology. 2005;65:603–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ondo WG, Adam OR, Jankovic J, Chinnery PF. Dramatic response of facial stereotype/tic to tetrabenazine in the first reported cases of neuroferritinopathy in the United States. Mov Disord. 2010;25:2470–2.

    Article  PubMed  Google Scholar 

  13. Lehn A, Mellick G, Boyle R. Teaching neuroimages: neuroferritinopathy. Neurology. 2011;77(18):e107.

    Article  PubMed  Google Scholar 

  14. Storti E, Cortese F, Di Fabio R, Fiorillo C, Pierallini A, Tessa A, Valleriani A, Pierelli F, Santorelli FM, Casali C. De novo FTL mutation: a clinical, neuroimaging, and molecular study. Mov Disord. 2013;28(2):252–3.

    Article  PubMed  Google Scholar 

  15. Ory-Magne F, Brefel-Courbon C, Payoux P, et al. Clinical phenotype and neuroimaging findings in a French family with hereditary ferritinopathy (FTL498-499insTC). Mov Disord. 2009;24:1676–83.

    Article  PubMed  Google Scholar 

  16. Wills AJ, Sawle GV, Guilbert PR, Curtis ARJ. Palatal tremor and cognitive decline in neuroferritinopathy. J Neurol Neurosurg Psychiatry. 2002;73:86–95.

    Article  Google Scholar 

  17. Cassidy AJ, Williams ER, Goldsmith P, Baker SN, Baker MR. The man who could not walk backward: a unusual presentation of neuroferritinopathy. Mov Disord. 2011;26:362–4.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Keogh MJ, Singh B, Chinnery PF. Early neuropsychiatry features in neuroferritinopathy. Mov Disord. 2013;28:1310–3.

    Article  PubMed  Google Scholar 

  19. Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev. 2013;14:551–64.

    Article  CAS  Google Scholar 

  20. Moos T, Morgan EH. The metabolism of neuronal iron and its pathogenic role in neurologic disease. Ann N Y Acad Sci. 2004;1012:14–26.

    Article  CAS  PubMed  Google Scholar 

  21. Friedman A, Arosio P, Finazzi D, Koziorowski D, Galazka-Friedman J. Ferritin as an important player in neurodegeneration. Parkinsonism Relat Disord. 2011;17(6):423–30.

    Article  PubMed  Google Scholar 

  22. Santambrogio P, Levi S, Cozzi A, Rovida E, Albertini A, Arosio P. Production and characterization of recombinant heteropolymers of human ferritin H and L-chains. J Biol Chem. 1993;268(17):12744–8.

    Google Scholar 

  23. Cozzi A, Levi S, Corsi B, Santambrogio P, Albertini A, Arosio P. Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. J Biol Chem. 2000;275:25122–9.

    Article  CAS  PubMed  Google Scholar 

  24. Cozzi A, Levi S, Corsi B, Santambrogio P, Campanella A, Gerardi G, Arosio P. Role of iron and ferritin in TNF alpha-induced apoptosis in HeLa cells. FEBS Lett. 2003;537:187–92.

    Article  CAS  PubMed  Google Scholar 

  25. Cozzi A, Rovelli E, Frizzale G, Campanella A, Amendola M, Arosio P, Levi S. Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiol Dis. 2010;37(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  26. Vidal R, Miravalle L, Gao X, Barbeito AG, Baraibar MA, Hekmatyar SK, Widel M, Bansal N, Delisle MB, Ghetti B. Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice. J Neurosci. 2008;28(1):60–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Deng X, Vidal R, Englander EW. Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy. Neurosci Lett. 2010;479:44–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ohta E, Takiyama Y. MRI findings in neuroferritinopathy. Neurol Res Int. 2012;2012:19743–8.

    Article  Google Scholar 

  29. McNeill A, Gorman G, Khan A, Horvath R, Blamire AM, Chinnery PF. Progressive brain iron accumulation in neuroferritinopathy measured by the thalamic T2* relaxation rate. AJNR Am J Neuroradiol. 2012;33(9):1810–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Crompton DE, Chinnery PF, Bates D, et al. Spectrum of movement disorders in neuroferritinopathy. Mov Disord. 2005;20:95–9.

    Article  PubMed  Google Scholar 

  31. Morphy MA, Feldman JA, Kilburn G. Hallervorden-Spatz disease in a psychiatric setting. J Clin Psychiatry. 1989;50:66–8.

    CAS  PubMed  Google Scholar 

  32. Szanto J, Gallyas F. A study of iron metabolism in neuropsychiatric patients. Hallervorden-Spatz disease. Arch Neurol. 1966;14:438–42.

    Article  CAS  PubMed  Google Scholar 

  33. Williamson K, Sima AA, Curry B, Ludwin SK. Neuroaxonal dystrophy in young adults: a clinicopathological study of two unrelated cases. Ann Neurol. 1982;11:335–43.

    Article  CAS  PubMed  Google Scholar 

  34. Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH, Gitschier J. Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med. 2003;348:33–40.

    Article  CAS  PubMed  Google Scholar 

  35. Muthane UB, Shetty R, Panda K, Yasha TC, Jayakumar PN, Taly AB. Hallervordern Spatz disease and acanthocytes. Neurology. 1999;53:32A.

    CAS  PubMed  Google Scholar 

  36. Dooling EC, Schoene WC, Richardson Jr EP. Hallervorden-Spatz syndrome. Arch Neurol. 1974;30:70–83.

    Article  CAS  PubMed  Google Scholar 

  37. Morgan NV, Westaway SK, Morton JE, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006;38:752–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Paisan-Ruiz C, Bhatia KP, Li A, et al. Characterization of PLA2G6 as a locus for dystonia-Parkinsonism. Ann Neurol. 2009;65(1):19–23.

    Article  PubMed  Google Scholar 

  39. Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet. 2009;46:73–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Paisan-Ruiz C, Li A, Schneider SA, et al. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging. 2012;33:814–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Yoshida K, Furihata K, Takeda S, Nakamura A, Yamamoto K, Morita H, Hiyamuta S, Ikeda S, Shimizu N, Yanagisawa N. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet. 1995;9:267–72.

    Article  CAS  PubMed  Google Scholar 

  42. McNeill A, Pandolfo M, Kuhn J, et al. The neurological presentation of ceruloplasmin gene mutations. Eur Neurol. 2008;60:200–5.

    Article  PubMed  Google Scholar 

  43. Miyajima H, Takahashi Y, Kono S, et al. An inherited disorder of iron metabolism. Biol Met. 2003;16:205–13.

    CAS  Google Scholar 

  44. Morita H, Ikeda S, Yamamoto K, et al. Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann Neurol. 1995;37:646–56.

    Article  CAS  PubMed  Google Scholar 

  45. Newell FW, Johnson 2nd RO, Huttenlocher PR. Pigmentary degeneration of the retina in the Hallervorden-Spatz syndrome. Am J Ophthalmol. 1979;88(3 Pt 1):467–71.

    CAS  PubMed  Google Scholar 

  46. Schneider AS, Hardy J, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord. 2012;27:42–53.

    Article  CAS  PubMed  Google Scholar 

  47. Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38:1184–91.

    Article  CAS  PubMed  Google Scholar 

  48. Brüggemann N, Hagenah J, Reetz K, et al. Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging phenotype. Arch Neurol. 2010;67:1357–63.

    PubMed  Google Scholar 

  49. Alazami AM, Al-Saif A, Al-Semari A, et al. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am J Hum Genet. 2008;83:684–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Woodhouse NJ, Sakati NA. A syndrome of hypogonadism, alopecia, diabetes mellitus, mental retardation, deafness, and ECG abnormalities. J Med Genet. 1983;20:216–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Saitsu H, et al. De novo mutations in the autophagy gene encoding WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet. 2013;45(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  52. Lehn A, Boyle R, Brown H, Airey C, Mellick G. Neuroferritinopathy. Parkinsonism Relat Disord. 2012;18:909–15.

    Article  PubMed  Google Scholar 

  53. Timmermann L, Pauls KA, Wieland K, et al. Dystonia in neurodegeneration with brain iron accumulation: Outcome of bilateral pallidal stimulation. Brain. 2010;133:701–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ge M, Zhang K, Ma Y, et al. Bilateral subthalamic nucleus stimulation in the treatment of neurodegeneration with brain iron accumulation type 1. Stereotact Funct Neurosurg. 2011;89:162–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Carlos Zuñiga for providing the MRI images of neuroferritinopathy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanderci Borges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Borges, V., Saba, R.A. (2014). Neuroferritinopathy. In: Micheli, F., LeWitt, P. (eds) Chorea. Springer, London. https://doi.org/10.1007/978-1-4471-6455-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6455-5_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6454-8

  • Online ISBN: 978-1-4471-6455-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics