Skip to main content

Huntington Disease and Huntington Disease-Like Syndromes: An Overview

  • Chapter
  • First Online:
Chorea

Abstract

The differential diagnosis of chorea syndromes may be complex. It includes inherited forms, the most important of which is autosomal dominant Huntington disease (HD). In addition there are disorders mimicking HD, the so-called HD-like syndromes, and molecular workup revealed that they account for about 1 % of suspected HD cases. The aim of this review is to summarize the main characteristics of these rare conditions in order to familiarize clinicians with them. While treatment remains symptomatic, advances have been made with genetic delineation. Hopefully with better understanding of their pathophysiology, we will also move towards mechanistic therapies.

The authors have no conflicts of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tabrizi SJ, Scahill RI, Durr A, et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 2011;10:31–42.

    PubMed  Google Scholar 

  2. Losekoot M, van Belzen MJ, Seneca S, Bauer P, Stenhouse SA, Barton DE. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease. Eur J Hum Genet. 2013;21:480–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Tabrizi SJ, Reilmann R, Roos RA, et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 2012;11:42–53.

    PubMed  Google Scholar 

  4. Wild EJ, Tabrizi SJ. Predict-HD and the future of therapeutic trials. Lancet Neurol. 2006;5:724–5.

    PubMed  Google Scholar 

  5. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98.

    CAS  PubMed  Google Scholar 

  6. Schneider SA, Walker RH, Bhatia KP. The Huntington’s disease-like syndromes: what to consider in patients with a negative Huntington’s disease gene test. Nat Clin Pract Neurol. 2007;3:517–25.

    CAS  PubMed  Google Scholar 

  7. Wild EJ, Tabrizi SJ. Huntington’s disease phenocopy syndromes. Curr Opin Neurol. 2007;20:681–7.

    PubMed  Google Scholar 

  8. Moore RC, Xiang F, Monaghan J, et al. Huntington disease phenocopy is a familial prion disease. Am J Hum Genet. 2001;69:1385–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Schneider SA, Bhatia KP. Huntington’s disease look-alikes. Handb Clin Neurol. 2011;100:101–12.

    PubMed  Google Scholar 

  10. Martino D, Stamelou M, Bhatia KP. The differential diagnosis of Huntington’s disease-like syndromes: ‘red flags’ for the clinician. J Neurol Neurosurg Psychiatry. 2013;84(6):650–6.

    PubMed Central  PubMed  Google Scholar 

  11. Xiang F, Almqvist EW, Huq M, et al. A Huntington disease-like neurodegenerative disorder maps to chromosome 20p. Am J Hum Genet. 1998;63:1431–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Laplanche JL, Hachimi KH, Durieux I, et al. Prominent psychiatric features and early onset in an inherited prion disease with a new insertional mutation in the prion protein gene. Brain. 1999;122(Pt 12):2375–86.

    PubMed  Google Scholar 

  13. Stevanin G, Camuzat A, Holmes SE, et al. CAG/CTG repeat expansions at the Huntington’s disease-like 2 locus are rare in Huntington’s disease patients. Neurology. 2002;58:965–7.

    CAS  PubMed  Google Scholar 

  14. Stevanin G, Fujigasaki H, Lebre AS, et al. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain. 2003;126:1599–603.

    PubMed  Google Scholar 

  15. Wild EJ, Mudanohwo EE, Sweeney MG, et al. Huntington’s disease phenocopies are clinically and genetically heterogeneous. Mov Disord. 2008;23:716–20.

    PubMed  Google Scholar 

  16. Paradisi I, Ikonomu V, Arias S. Huntington disease-like 2 (HDL2) in Venezuela: frequency and ethnic origin. J Hum Genet. 2013;58:3–6.

    CAS  PubMed  Google Scholar 

  17. Krause A, Greenberg J. Genetic testing for Huntington’s disease in South Africa. S Afr Med J. 2008;98:193–4.

    PubMed  Google Scholar 

  18. Magazi DS, Krause A, Bonev V, et al. Huntington’s disease: genetic heterogeneity in black African patients. S Afr Med J. 2008;98:200–3.

    CAS  PubMed  Google Scholar 

  19. Schneider SA, Marshall KE, Xiao J, LeDoux MS. JPH3 repeat expansions cause a progressive akinetic-rigid syndrome with severe dementia and putaminal rim in a five-generation African-American family. Neurogenetics. 2012;13:133–40.

    PubMed Central  PubMed  Google Scholar 

  20. Greenstein PE, Vonsattel JP, Margolis RL, Joseph JT. Huntington’s disease like-2 neuropathology. Mov Disord. 2007;22:1416–23.

    PubMed  Google Scholar 

  21. Margolis RL, Rudnicki DD, Holmes SE. Huntington’s disease like-2: review and update. Acta Neurol Taiwan. 2005;14:1–8.

    PubMed  Google Scholar 

  22. Holmes SE, O’Hearn E, Rosenblatt A, et al. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet. 2001;29:377–8.

    CAS  PubMed  Google Scholar 

  23. Margolis RL, Holmes SE, Rosenblatt A, et al. Huntington’s disease-like 2 (HDL2) in North America and Japan. Ann Neurol. 2004;56:670–4.

    CAS  PubMed  Google Scholar 

  24. Rudnicki DD, Pletnikova O, Vonsattel JP, Ross CA, Margolis RL. A comparison of Huntington disease and Huntington disease-like 2 neuropathology. J Neuropathol Exp Neurol. 2008;67:366–74.

    PubMed  Google Scholar 

  25. Seixas AI, Holmes SE, Takeshima H, et al. Loss of junctophilin-3 contributes to Huntington disease-like 2 pathogenesis. Ann Neurol. 2012;71:245–57.

    CAS  PubMed  Google Scholar 

  26. Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL. Huntington’s disease–like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol. 2007;61:272–82.

    CAS  PubMed  Google Scholar 

  27. Toyoshima Y, Onodera O, Yamada M, Tsuji S, Takahashi H. Spinocerebellar ataxia type 17. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. University of Washington, Seattle, WA; 1993–2014. 2005 Mar 29 [updated 2012 May 17].

    Google Scholar 

  28. Gao R, Matsuura T, Coolbaugh M, et al. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet. 2008;16:215–22.

    CAS  PubMed  Google Scholar 

  29. Rasmussen A, De Biase I, Fragoso-Benitez M, et al. Anticipation and intergenerational repeat instability in spinocerebellar ataxia type 17. Ann Neurol. 2007;61:607–10.

    CAS  PubMed  Google Scholar 

  30. Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001;10:1441–8.

    CAS  PubMed  Google Scholar 

  31. Cha JH. Transcriptional dysregulation in Huntington’s disease. Trends Neurosci. 2000;23:387–92.

    CAS  PubMed  Google Scholar 

  32. Ren J, Jegga AG, Zhang M, et al. A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome. Hum Mol Genet. 2011;20:3424–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Chang YC, Lin CY, Hsu CM, et al. Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. J Neurochem. 2011;118:288–303.

    CAS  PubMed  Google Scholar 

  34. Stevanin G, Brice A. Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum. 2008;7:170–8.

    CAS  PubMed  Google Scholar 

  35. Mehanna R, Itin I. From normal gait to loss of ambulation in 6 months: a novel presentation of SCA17. Cerebellum. 2013;12(4):568–71.

    CAS  PubMed  Google Scholar 

  36. Craig K, Keers SM, Walls TJ, Curtis A, Chinnery PF. Minimum prevalence of spinocerebellar ataxia 17 in the North east of England. J Neurol Sci. 2005;239:105–9.

    CAS  PubMed  Google Scholar 

  37. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124:1–21.

    CAS  PubMed  Google Scholar 

  38. Rolfs A, Koeppen AH, Bauer I, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol. 2003;54:367–75.

    PubMed  Google Scholar 

  39. Loy CT, Sweeney MG, Davis MB, et al. Spinocerebellar ataxia type 17: extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord. 2005;20:1521–3.

    PubMed  Google Scholar 

  40. Brockmann K, Reimold M, Globas C, et al. PET and MRI reveal early evidence of neurodegeneration in spinocerebellar ataxia type 17. J Nucl Med. 2012;53:1074–80.

    PubMed  Google Scholar 

  41. Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    PubMed  Google Scholar 

  42. Naito H, Oyanagi S. Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology. 1982;32:798–807.

    CAS  PubMed  Google Scholar 

  43. Nagafuchi S, Yanagisawa H, Sato K, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet. 1994;6:14–8.

    CAS  PubMed  Google Scholar 

  44. Koide R, Ikeuchi T, Onodera O, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994;6:9–13.

    CAS  PubMed  Google Scholar 

  45. Nagafuchi S, Yanagisawa H, Ohsaki E, et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet. 1994;8:177–82.

    CAS  PubMed  Google Scholar 

  46. Tsuji S. Dentatorubral-pallidoluysian atrophy. Handb Clin Neurol. 2012;103:587–94.

    PubMed  Google Scholar 

  47. Tsuji S. Dentatorubral-pallidoluysian atrophy (DRPLA): clinical features and molecular genetics. Adv Neurol. 1999;79:399–409.

    CAS  PubMed  Google Scholar 

  48. Sunami Y, Koide R, Arai N, Yamada M, Mizutani T, Oyanagi K. Radiologic and neuropathologic findings in patients in a family with dentatorubral-pallidoluysian atrophy. AJNR Am J Neuroradiol. 2011;32:109–14.

    CAS  PubMed  Google Scholar 

  49. Wardle M, Morris HR, Robertson NP. Clinical and genetic characteristics of non-Asian dentatorubral-pallidoluysian atrophy: a systematic review. Mov Disord. 2009;24:1636–40.

    PubMed  Google Scholar 

  50. Curtis AR, Fey C, Morris CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001;28:350–4.

    CAS  PubMed  Google Scholar 

  51. Chinnery PF. Neuroferritinopathy. In: GeneReviews® [Internet]. University of Washington, Seattle, WA; 1993–2014. 2005 Apr 25 [updated 2010 Dec 23].

    Google Scholar 

  52. Chinnery PF, Crompton DE, Birchall D, et al. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain. 2007;130:110–9.

    PubMed  Google Scholar 

  53. Ohta E, Takiyama Y. MRI findings in neuroferritinopathy. Neurol Res Int. 2012;2012:197438.

    PubMed Central  PubMed  Google Scholar 

  54. McNeill A, Gorman G, Khan A, Horvath R, Blamire AM, Chinnery PF. Progressive brain iron accumulation in neuroferritinopathy measured by the thalamic T2* relaxation rate. AJNR Am J Neuroradiol. 2012;33:1810–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Shah SO, Mehta H, Fekete R. Late-onset neurodegeneration with brain iron accumulation with diffusion tensor magnetic resonance imaging. Case Rep Neurol. 2012;4:216–23.

    PubMed Central  PubMed  Google Scholar 

  56. Vidal R, Ghetti B, Takao M, et al. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol. 2004;63:363–80.

    CAS  PubMed  Google Scholar 

  57. Ohta E, Nagasaka T, Shindo K, et al. Neuroferritinopathy in a Japanese family with a duplication in the ferritin light chain gene. Neurology. 2008;70:1493–4.

    CAS  PubMed  Google Scholar 

  58. Mancuso M, Davidzon G, Kurlan RM, et al. Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. J Neuropathol Exp Neurol. 2005;64:280–94.

    CAS  PubMed  Google Scholar 

  59. Maciel P, Cruz VT, Constante M, et al. Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement. Neurology. 2005;65:603–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kubota A, Hida A, Ichikawa Y, et al. A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype-phenotype correlations. Mov Disord. 2009;24:441–5.

    PubMed  Google Scholar 

  61. Devos D, Tchofo PJ, Vuillaume I, et al. Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation. Brain. 2009;132:e109.

    PubMed Central  PubMed  Google Scholar 

  62. Nonnenmacher L, Langer T, Blessing H, et al. Hereditary hyperferritinemia cataract syndrome: clinical, genetic, and laboratory findings in 5 families. Klin Padiatr. 2011;223:346–51.

    CAS  PubMed  Google Scholar 

  63. Girelli D, Olivieri O, De Franceschi L, Corrocher R, Bergamaschi G, Cazzola M. A linkage between hereditary hyperferritinaemia not related to iron overload and autosomal dominant congenital cataract. Br J Haematol. 1995;90:931–4.

    CAS  PubMed  Google Scholar 

  64. Craig JE, Clark JB, McLeod JL, et al. Hereditary hyperferritinemia-cataract syndrome: prevalence, lens morphology, spectrum of mutations, and clinical presentations. Arch Ophthalmol. 2003;121:1753–61.

    PubMed  Google Scholar 

  65. Gras D, Jonard L, Roze E, et al. Benign hereditary chorea: phenotype, prognosis, therapeutic outcome and long term follow-up in a large series with new mutations in the TITF1/NKX2-1 gene. J Neurol Neurosurg Psychiatry. 2012;83:956–62.

    PubMed  Google Scholar 

  66. Devriendt K, Vanhole C, Matthijs G, de Zegher F. Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med. 1998;338:1317–8.

    CAS  PubMed  Google Scholar 

  67. Kimura S. Thyroid-specific enhancer-binding protein Role in thyroid function and organogenesis. Trends Endocrinol Metab. 1996;7:247–52.

    CAS  PubMed  Google Scholar 

  68. Wheeler PG, Weaver DD, Dobyns WB. Benign hereditary chorea. Pediatr Neurol. 1993;9:337–40.

    CAS  PubMed  Google Scholar 

  69. Asmus F, Horber V, Pohlenz J, et al. A novel TITF-1 mutation causes benign hereditary chorea with response to levodopa. Neurology. 2005;64:1952–4.

    CAS  PubMed  Google Scholar 

  70. Mahajnah M, Inbar D, Steinmetz A, Heutink P, Breedveld GJ, Straussberg R. Benign hereditary chorea: clinical, neuroimaging, and genetic findings. J Child Neurol. 2007;22:1231–4.

    PubMed  Google Scholar 

  71. Kleiner-Fisman G, Rogaeva E, Halliday W, et al. Benign hereditary chorea: clinical, genetic, and pathological findings. Ann Neurol. 2003;54:244–7.

    CAS  PubMed  Google Scholar 

  72. Kleiner-Fisman G, Calingasan NY, Putt M, Chen J, Beal MF, Lang AE. Alterations of striatal neurons in benign hereditary chorea. Mov Disord. 2005;20:1353–7.

    PubMed  Google Scholar 

  73. Shimohata T, Hara K, Sanpei K, et al. Novel locus for benign hereditary chorea with adult onset maps to chromosome 8q21.3 q23.3. Brain. 2007;130:2302–9.

    PubMed  Google Scholar 

  74. Kambouris M, Bohlega S, Al-Tahan A, Meyer BF. Localization of the gene for a novel autosomal recessive neurodegenerative Huntington-like disorder to 4p15.3. Am J Hum Genet. 2000;66:445–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Walker RH, Jung HH, Dobson-Stone C, et al. Neurologic phenotypes associated with acanthocytosis. Neurology. 2007;68:92–8.

    CAS  PubMed  Google Scholar 

  76. Sokolov E, Schneider SA, Bain PG. Chorea-acanthocytosis. Pract Neurol. 2012;12:40–3.

    PubMed  Google Scholar 

  77. Rampoldi L, Dobson-Stone C, Rubio JP, et al. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet. 2001;28:119–20.

    CAS  PubMed  Google Scholar 

  78. Ueno S, Maruki Y, Nakamura M, et al. The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat Genet. 2001;28:121–2.

    CAS  PubMed  Google Scholar 

  79. Jung HH, Danek A, Walker RH. Neuroacanthocytosis syndromes. Orphanet J Rare Dis. 2011;6:68.

    PubMed Central  PubMed  Google Scholar 

  80. Bader B, Walker RH, Vogel M, Prosiegel M, McIntosh J, Danek A. Tongue protrusion and feeding dystonia: a hallmark of chorea-acanthocytosis. Mov Disord. 2010;25:127–9.

    PubMed  Google Scholar 

  81. Schneider SA, Lang AE, Moro E, Bader B, Danek A, Bhatia KP. Characteristic head drops and axial extension in advanced chorea-acanthocytosis. Mov Disord. 2010;25:1487–91.

    PubMed  Google Scholar 

  82. Danek A, Walker RH. Neuroacanthocytosis. Curr Opin Neurol. 2005;18:386–92.

    PubMed  Google Scholar 

  83. Storch A, Kornhass M, Schwarz J. Testing for acanthocytosis A prospective reader-blinded study in movement disorder patients. J Neurol. 2005;252:84–90.

    PubMed  Google Scholar 

  84. Alawneh J, Baker MR, Young GR. Blood films in the investigation of chorea. Pract Neurol. 2012;12:268.

    PubMed  Google Scholar 

  85. Schmidt EM, Schmid E, Munzer P, et al. Chorein sensitivity of cytoskeletal organization and degranulation of platelets. FASEB J. 2013;27(7):2799–806.

    CAS  PubMed  Google Scholar 

  86. Henkel K, Danek A, Grafman J, Butman J, Kassubek J. Head of the caudate nucleus is most vulnerable in chorea-acanthocytosis: a voxel-based morphometry study. Mov Disord. 2006;21:1728–31.

    PubMed  Google Scholar 

  87. Walterfang M, Yucel M, Walker R, et al. Adolescent obsessive compulsive disorder heralding chorea-acanthocytosis. Mov Disord. 2008;23:422–5.

    PubMed  Google Scholar 

  88. Hardie RJ, Pullon HW, Harding AE, et al. Neuroacanthocytosis. A clinical, haematological and pathological study of 19 cases. Brain. 1991;114(Pt 1A):13–49.

    PubMed  Google Scholar 

  89. Rinne JO, Daniel SE, Scaravilli F, Pires M, Harding AE, Marsden CD. The neuropathological features of neuroacanthocytosis. Mov Disord. 1994;9:297–304.

    CAS  PubMed  Google Scholar 

  90. Moro E, Lang AE, Strafella AP, Poon YY, Arango PM, Dagher A, Hutchison WD, Lozano AM. Bilateral globus pallidus stimulation for Huntington’s disease. Ann Neurol. 2004;56(2):290–4.

    PubMed  Google Scholar 

  91. Hebb MO, Garcia R, Gaudet P, Mendez IM. Bilateral stimulation of the globus pallidus internus to treat choreathetosis in Huntington’s disease: technical case report. Neurosurgery. 2006;58(2):E383; discussion E383.

    PubMed  Google Scholar 

  92. Fasano A, Mazzone P, Piano C, Quaranta D, Soleti F, Bentivoglio AR. GPi-DBS in Huntington’s disease: results on motor function and cognition in a 72-year-old case. Mov Disord. 2008;23(9):1289–92.

    PubMed  Google Scholar 

  93. Biolsi B, Cif L, Fertit HE, Robles SG, Coubes P. Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg. 2008;109(1):130–2.

    PubMed  Google Scholar 

  94. Kang GA, Heath S, Rothlind J, Starr PA. Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington’s disease. J Neurol Neurosurg Psychiatry. 2011;82(3):272–7.

    PubMed  Google Scholar 

  95. Spielberger S, Hotter A, Wolf E, Eisner W, Müller J, Poewe W, Seppi K. Deep brain stimulation in Huntington’s disease: a 4-year follow-up case report. Mov Disord. 2012;27(6):806–7.

    PubMed  Google Scholar 

  96. Garcia-Ruiz PJ, Ayerbe J, del Val J, Herranz A. Deep brain stimulation in disabling involuntary vocalization associated with Huntington’s disease. Parkinsonism Relat Disord. 2012;18(6):803–4.

    PubMed  Google Scholar 

  97. Wihl G, Volkmann J, Allert N, Lehrke R, Sturm V, Freund HJ. Deep brain stimulation of the internal pallidum did not improve chorea in a patient with neuro-acanthocytosis. Mov Disord. 2001;16(3):572–5.

    CAS  PubMed  Google Scholar 

  98. Burbaud P, Rougier A, Ferrer X, Guehl D, Cuny E, Arne P, Gross C, Bioulac B. Improvement of severe trunk spasms by bilateral high-frequency stimulation of the motor thalamus in a patient with chorea-acanthocytosis. Mov Disord. 2002;17(1):204–7.

    PubMed  Google Scholar 

  99. Burbaud P, Vital A, Rougier A, Bouillot S, Guehl D, Cuny E, Ferrer X, Lagueny A, Bioulac B. Minimal tissue damage after stimulation of the motor thalamus in a case of chorea-acanthocytosis. Neurology. 2002;59(12):1982–4.

    CAS  PubMed  Google Scholar 

  100. Guehl D, Cuny E, Tison F, Benazzouz A, Bardinet E, Sibon Y, Ghorayeb I, Yelnick J, Rougier A, Bioulac B, Burbaud P. Deep brain pallidal stimulation for movement disorders in neuroacanthocytosis. Neurology. 2007;68(2):160–1.

    CAS  PubMed  Google Scholar 

  101. Ruiz PJ, Ayerbe J, Bader B, Danek A, Sainz MJ, Cabo I, Frech FA. Deep brain stimulation in chorea acanthocytosis. Mov Disord. 2009;24(10):1546–7.

    PubMed  Google Scholar 

  102. Li P, Huang R, Song W, Ji J, Burgunder JM, Wang X, Zhong Q, Kaelin-Lang A, Wang W, Shang HF. Deep brain stimulation of the globus pallidus internal improves symptoms of chorea-acanthocytosis. Neurol Sci. 2012;33(2):269–74.

    CAS  PubMed  Google Scholar 

  103. Shin H, Ki CS, Cho AR, Lee JI, Ahn JY, Lee JH, Cho JW. Globus pallidus interna deep brain stimulation improves chorea and functional status in a patient with chorea-acanthocytosis. Stereotact Funct Neurosurg. 2012;90(4):273–7.

    PubMed  Google Scholar 

  104. Kefalopoulou Z, Zrinzo L, Aviles-Olmos I, et al. Deep brain stimulation as a treatment for chorea-acanthocytosis. J Neurol. 2013;260:303–5.

    PubMed  Google Scholar 

  105. Lim TT, Fernandez HH, Cooper S, Wilson KM, Machado AG. Successful DBS surgery with intraoperative MRI on a difficult neuroacanthocytosis case. Neurosurgery. 2013;73(1):E184–7.

    PubMed  Google Scholar 

  106. Miquel M, Spampinato U, Latxague C, Aviles-Olmos I, Bader B, Bertram K, Bhatia K, Burbaud P, Burghaus L, Cho JW, Cuny E, Danek A, Foltynie T, Garcia Ruiz PJ, Giménez-Roldán S, Guehl D, Guridi J, Hariz M, Jarman P, Kefalopoulou ZM, Limousin P, Lipsman N, Lozano AM, Moro E, Ngy D, Rodriguez-Oroz MC, Shang H, Shin H, Walker RH, Yokochi F, Zrinzo L, Tison F. Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis. PLoS One. 2013;8(11):e79241.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Schneider SA, Klein C. What is the role of genetic testing in movement disorders practice? Curr Neurol Neurosci Rep. 2011;11:351–61.

    PubMed  Google Scholar 

  108. Armstrong MJ, Miyasaki JM. Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2012;79:597–603.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne A. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Schneider, S.A., Gövert, F. (2014). Huntington Disease and Huntington Disease-Like Syndromes: An Overview. In: Micheli, F., LeWitt, P. (eds) Chorea. Springer, London. https://doi.org/10.1007/978-1-4471-6455-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6455-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6454-8

  • Online ISBN: 978-1-4471-6455-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics