Skip to main content

Influence of Altitude on the Behavior of Solid Desiccant Dehumidification System

  • Chapter
  • First Online:
Desiccant-Assisted Cooling

Abstract

A study is described regarding the influence of the altitude, from 0 to 4,217 m (corresponding to atmospheric pressure from 101,325 to 60,000 Pa), on the behavior of a simple solid desiccant system used for air dehumidification purposes. The heating coil and the desiccant wheel are the main components investigated. The effectiveness method is used to evaluate the global behavior of the heating coil, and a detailed numerical model developed by the authors is used to predict the behavior of the desiccant wheel. Fixed-mass and fixed-volume airflow rate operations are considered in the comparison of the results at different altitudes. Two modes of specifying the inlet states of both airflows in the system are taken into account: (1) temperature and water vapor content and (2) temperature and relative humidity. As the atmospheric pressure decreases, the heat and mass transfer rates increase or decrease, depending on the mode of fixing the airflow rates and the inlet states of both airflows. Correction factors are determined for fixed-volume and fixed-mass airflow rate operations. The results show that these correction factors are also affected by the rotation speed of the desiccant wheel. Sea level data can be adopted for sizing the system without the need of correction when fixed-mass airflow rate and specifying the inlet states by the temperature and water vapor content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( a \) :

Coefficient in Eq. (15)

\( {A} \) :

Transfer area (m2)

\( b \) :

Exponent in Eq. (15)

\( c \) :

Exponent in Eq. (15)

\( c_{p} \) :

Specific heat (J kg−1 °C−1)

\( c_{\text{pf}}^{ *} \) :

Specific heat of the moist air (J kg−1 ºC−1)

\( {C} \) :

Heat capacity rate (J s−1 ºC−1)

\( {\text{CR}} \) :

Ratio of heat capacity rates

\( d_{h} \) :

Dydraulic diameter (m)

\( D_{f} \) :

Diffusion coefficient of water vapor in the moist air (m2 s−1)

\( F \) :

Correction factor for the actual exchanger configuration

\( F1,\,F2 \) :

Combined potentials or characteristic potentials

\( h \) :

Specific enthalpy of moist air (J kg−3)

\( h_{h} \) :

Convective heat transfer coefficient (W m−2 ºC−1)

\( h_{m} \) :

Convective mass transfer coefficient (m s−1)

\( {H} \) :

Altitude (m)

\( j_{h} \) :

Heat convective flux (W m−2)

\( j_{m} \) :

Mass convective flux (W m−2)

\( \dot{J}_{h} \) :

Heat transfer rate per unit of transfer area of a desiccant wheel (W m−2)

\( \dot{J}_{m} \) :

Mass transfer rate per unit of transfer area of a desiccant wheel (kg s−1 m−2)

\( k \) :

Correction factor for the effect of pressure decrease on the heat or mass transfer rates

\( {\text{Le}} \) :

Lewis number

\( m \) :

Mass (kg)

\( \dot{m} \) :

Mass flow rate (kg s−1)

\( n_{\phi } \) :

Exponent in Eq. (18)

\( {\text{NTU}} \) :

Number of transfer units

\( {\text{Nu}} \) :

Nussel number

\( P \) :

Atmospheric pressure (Pa)

\( { \Pr } \) :

Prandtl number

\( {P_{v}} \) :

Partial pressure of water vapor (Pa)

\( P{}_{\text{vs}} \) :

Saturation pressure of water vapor (Pa)

\( \dot{Q} \) :

Heat transfer rate (W)

\( R \) :

Gas constant (J kg−1 ºC−1)

\( {R} \) :

Thermal resistance (ºC W−1)

\( {\text{Re}} \) :

Reynolds number

\( {\text{Sh}} \) :

Sherwood number

\( T \) :

Temperature (ºC)

\( T_{\text{sat}} \) :

Water saturation temperature (ºC)

\( {U} \) :

Overall heat transfer coefficient (W m−2 ºC−1)

\( w_{v} \) :

Water vapor content (kg kg−1)

\( v \) :

Specific volume of moist air referred to the unity of dry air mass (mkg−1)

\( v^{*} \) :

Specific volume of the moist air (mkg−1)

\( V \) :

Volume (m3)

\( \dot{V} \) :

Volume flow rate (ms−1)

\( X_{\ell } \) :

Adsorbed water content in the desiccant (kg kg−1)

\( \Updelta T_{\text{lm}} \) :

Log mean temperature difference for a heat exchanger (ºC)

\( \varepsilon \) :

Effectiveness

\( \varphi_{v} \) :

Water vapor mass fraction

\( \eta_{F1} ,\,\eta_{F2} \) :

Effectiveness parameters based on variations in F1 and F2, respectively

\( \eta_{\psi } ,\;\eta_{h} \) :

Effectiveness parameters based on variations in \( {\psi } \) and \( h \), respectively

\( \lambda \) :

Thermal conductivity (W m−1 ºC−1)

\( \psi \) :

Ratio of the partial vapor pressure to the saturation vapor pressure

\( \psi^{*} \) :

Relative humidity

\( \rho \) :

Density (kg m−3)

\( \sigma_{w} \) :

Density ratio when \( {T} \) and \( {w}_{v} \) remain constant

\( \sigma_{\psi } \) :

Density ratio when \( {T} \) and \( {\psi } \) remain constant

\( a \) :

Air

\( {\text{cf}} \) :

Counter-flow heat exchanger

\( {\text{coil}} \) :

Heating coil

\( f \) :

Airflow

\( {\text{in}} \) :

Inlet

\( { \hbox{min} } \) :

Minimum value

\( { \hbox{max} } \) :

Maximum value

\( {\text{out}} \) :

Outlet

\( {\text{ref}} \) :

Reference condition at sea level

\( s \) :

Surface

\( {\text{st}} \) :

Standard air condition

\( v \) :

Water vapor

\( w \) :

Water

\( \phi \) :

Air (a) or water (w)

References

  1. Pesaran A, Heiden R (1994) The influence of altitude on the performance of desiccant-cooling systems. Energy 19:1165–1179

    Article  Google Scholar 

  2. Dai Y, Wang H (2001) Parameter analysis to improve rotary desiccant dehumidification using a mathematical model. Int J Therm Sci 40:400–408

    Article  Google Scholar 

  3. Cejudo J, Moreno R, Carrillo A (2002) Physical and neural network models of a silica gel desiccant wheel. Energy Build 34:837–844

    Article  Google Scholar 

  4. Niu J, Zhang L (2002) Effects of wall thickness on the heat and moisture transfer in desiccant wheels for air dehumidification and enthalpy recovery. Int Commun Heat Mass Transf 29:255–268

    Article  Google Scholar 

  5. Zhang L, Niu J (2002) Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery. Appl Therm Eng 22:1347–1367

    Article  MathSciNet  Google Scholar 

  6. Zhang XJ, Dai YJ, Wang RZ (2003) A simulation study of heat and mass transfer in a honeycomb rotary desiccant dehumidifier. Appl Therm Eng 23:989–1003

    Article  Google Scholar 

  7. Sphaier L, Worek W (2004) Analysis of heat and mass transfer in porous sorbents used in rotary regenerators. Appl Therm Eng 47:3415–3430

    MATH  Google Scholar 

  8. Sphaier L, Worek W (2006) Comparisons between 2-D and 1-D formulations of heat and mass transfer in rotary regenerators. Numer Heat Transfer, Part B Appl 49:223–237

    Article  Google Scholar 

  9. Ruivo C, Costa J, Figueiredo A (2007) On the behaviour of hygroscopic wheels: Part I—channel modelling. Int J Heat Mass Transf 50:4812–4822

    Article  MATH  Google Scholar 

  10. Ruivo C, Costa J, Figueiredo A (2007) On the behaviour of hygroscopic wheels: Part II—rotor performance. Int J Heat Mass Transf 50:4823–4832

    Article  MATH  Google Scholar 

  11. Chung J, Lee D, Yoon S (2009) Optimization of desiccant wheel speed and area ratio of regeneration to dehumidification as a function of regeneration temperature. Sol Energy 83:625–635

    Article  Google Scholar 

  12. Ruivo C, Costa J, Figueiredo A (2011) Influence of the atmospheric pressure on the mass transfer rate of desiccant wheels. Int J Refrig 34:707–718

    Article  Google Scholar 

  13. Ruivo C, Costa J, Figueiredo A (2011) Numerical study of the influence of the atmospheric pressure on the heat and mass transfer rates of desiccant wheels. Int J Heat Mass Transf 54:1331–1339

    Article  MATH  Google Scholar 

  14. ASHRAE Handbook (2005) Fundamentals Volume, American Society of Heating, Refrigerating and Air-Conditioning, Inc., Atlanta

    Google Scholar 

  15. Qureshi B, Zubair S (2006) A comprehensive design and rating study of evaporative coolers and condensers. Part I. Performance evaluation. Int J Refrig 29:645–658

    Article  Google Scholar 

  16. Wolf technical documentation, Air handling units KG/KGW Top 21-1000, http://www.wolf-heiztechnik.de/en/pkp/produkte/klimatechnik/kgtop.html. Accessed on 4 Jul 2012

  17. Çengel Y (1998) Heat transfer—a practical approach. McGraw-Hill, New York

    Google Scholar 

  18. Stabat P, Marchio D (2008) Heat-and-mass transfers modelled for rotary desiccant dehumidifiers. Appl Energy 85:128–142

    Article  Google Scholar 

  19. Ruivo C, Carrillo-Andrés A, Costa J, Domínguez-Muñoz F (2012) A new approach to the effectiveness method for the simulation of desiccant wheels with variable inlet states and airflows rates. Appl Therm Eng 58:670–678

    Google Scholar 

  20. Neti S, Wolfe E (2000) Measurements of effectiveness in a silica gel rotary exchanger. Appl Therm Eng 20:309–322

    Article  Google Scholar 

  21. Mandegari M, Pahlavanzadeh H (2002) Introduction of a new definition for effectiveness of desiccant wheels. Energy 34:797–803

    Article  Google Scholar 

  22. Kabeel A (2007) Solar powered air conditioning system using rotary honeycomb desiccant wheel. Renew Energy 32:1842–1857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Ruivo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ruivo, C.R., Costa, J.J., Figueiredo, A.R. (2014). Influence of Altitude on the Behavior of Solid Desiccant Dehumidification System. In: Nóbrega, C., Brum, N. (eds) Desiccant-Assisted Cooling. Springer, London. https://doi.org/10.1007/978-1-4471-5565-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5565-2_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5564-5

  • Online ISBN: 978-1-4471-5565-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics