Skip to main content

Sustainability of (H2 + CH4) by Anaerobic Digestion via EROI Approach and LCA Evaluations

  • Chapter
  • First Online:
Life Cycle Assessment of Renewable Energy Sources

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The contents of this Chapter focus on the theoretical sustainable energy approach and its application to hydrogen and methane production, on the basis of results obtained from experimental tests on the Anaerobic Digestion (AD) technology. The evaluation of sustainability is pursued through the life cycle assessment (LCA), energy return on investment (EROI) and energy payback time (EPT) approaches. The EROI and EPT parameters are defined and applied to score the sustainability of the H2/CH4 energy carrier. The evaluation of the indirect energy following a life cycle assessment is consistent for the sustainability analysis. The sustainability of AD technology strongly depends on the reactor diameter: for values lower than 1 m the technology is not able to sustain the well-being of the society; the effect of the insulating material as well as the labor could be very important, and in this respect, thus, a sensitivity analysis on the sustainability is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • SimaPro 7.2.4 Software (2010) Product ecology consultants, Pré Consultants, Amersfoort

    Google Scholar 

  • Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006) Microbial fuel cell for wastewater treatment. Water Sci Technol 54:9–15

    Article  Google Scholar 

  • Akutzu Y, Li YY, Harada H, Yu HQ (2009) Effect of temperature and substrate concentration on biological hydrogen production from starch. Int J Hydrogen Energy 34:2558–2566

    Article  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultures waste water. Trends Biotechnol 22(9):477–485

    Article  Google Scholar 

  • Azapagic A (1999) Life cycle assessment and its application to process selection, design and optimisation. Chem Eng J 73:1–21

    Article  Google Scholar 

  • Azapagic A, Perdan S (2000) Indicators of sustainable development for industry: a general framework. Process Saf Environ Prot 78(4):243–261

    Article  Google Scholar 

  • Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw Hill Education International Editions, Singapore

    Google Scholar 

  • Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrogen Energy 33:4013–4029

    Article  Google Scholar 

  • Bettoli S (2010) Indagine Sperimentale con Reattore Batch su Rifiuti Mercatali per la Produzione di Bioidrogeno. Thesis at Politecnico di Torino, Turin

    Google Scholar 

  • Brandt AR (2009) Converting oil shale to liquid fuels with the Alberta Taciuk processor: energy input and greenhouse gas emission. Energy Fuels 23:6253–6258

    Article  Google Scholar 

  • Brown MT, Herendeen RA (1996) Embodied energy analysis and EMERGY analysis: a comparative view. Ecol Econ 19:219–235

    Article  Google Scholar 

  • Buwal 250 (1996) Life cycle inventories for packaging. Swiss Federal Office of the Environment, Forests and Landscape. Switzerland

    Google Scholar 

  • Carniege-Mellon (2009) Economic input–output life cycle Assessment. Pittsburg Pennsylvania available on line at: http://www.eiolca.net/. Cited on 5 Oct 2011

  • Chen CC, Lin CY, Lin MC (2002) Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58:224–228

    Article  Google Scholar 

  • Cleveland CJ, Costanza R (2010) Net energy analysis. In: Encyclopedia of Earth. National Council for Science and Environment. Available via http://www.eoearth.org/article/Net_energy_analysis. Cited 22 Jan 2011

  • Cleveland CJ, O’Connor P (2011) Energy return of investment (EROI) of oil shale. Sustainability 3:2307–2322

    Article  Google Scholar 

  • Cleveland CJ, Costanza R, Hall CAS, Kaufmann R (1984) Comparing different energy processes from energy and the U.S. economy: a biophysical perspective. Science 225:890–897

    Article  Google Scholar 

  • Cocchi A (1993) Elementi di termofisica Generale e Applicata. Progetto Leonardo Press, Bologna

    Google Scholar 

  • De Simone LD, Popoff F (1997) Eco-efficiency: the business link to sustainable development. MIT, Cambridge

    Google Scholar 

  • de Swaan AJ, van der Kooi H, Sankaranarayanan K (2004) Efficiency and sustainability in the energy and chemical industries. Marcel Dekker Inc, New York

    Google Scholar 

  • Debenedetti B, Maffia L, Rossi S (2007) From materials to eco-materials: life-cycle environmental approach for insulation products in building applications. Proceedings of the 8th international conference of eco-materials, Brunel University, UK

    Google Scholar 

  • Ecoinvent (2007) Ecoinvent data v2.0., Final reports Ecoinvent 2000 N.o 1–25. Swiss Centre for Life Cycle Inventories, Dubendorf

    Google Scholar 

  • Energy Business Report (2008) Landfill gas as an energy source technology and opportunities 166 case studies. http://energybusinessreport.com

  • Evans G (2001) Biowaste and biological waste treatment. James and James Science Publishers, London

    Google Scholar 

  • Franzese PP, Rydberg T, Russo GF, Ulgiati S (2009) Sustainable biomass production: a comparison between gross energy requirement and energy synthesis methods. Ecol Indic 9:959–970

    Article  Google Scholar 

  • Gómez X, Fernández C, Fierro J, Sánchez ME, Escapa A, Morán A (2011) Hydrogen production: two stage processes for waste degradation. Biores Technol 102(18):8621–8627

    Article  Google Scholar 

  • Guéhenneux G, Baussand P, Brothier M, Poletiko C, Boissonnet G (2005) Energy production from biomass pyrolysis: a new coefficient of pyrolytic valorisation. Fuel 84(6):733–739

    Article  Google Scholar 

  • Guilford MC, Hall CAS, O’Connor P, Cleveland CJ (2011) A new long term assesment of energy return on investment (EROI) for U.S. oil and gas discovery and production. Sustainability 3:1866–1887

    Article  Google Scholar 

  • Hall CAS, Balogh S, Murphy DJR (2009) What is the minimum EROI that a sustainable society must have? Energies 2:25–47

    Article  Google Scholar 

  • Hammerschlag R (2006) Ethanol’s energy return on investment: a survey of the literature 1990-present. Environ Sci Technol 40(6):1744–1750

    Article  Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimization. Int J Hydrogen Energy 27:1339–1347

    Article  Google Scholar 

  • Hill CG (1977) An introduction to chemical engineering kinetics and reactor design. Wiley, New York

    Google Scholar 

  • Kim J, Park C, Kim TH, Lee M, Kim S, Kim SW et al (2009) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95(3):271–275

    Google Scholar 

  • Kraemer JT, Bagley DM (2005) Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environ Sci Technol 39(10):3819–3825

    Article  Google Scholar 

  • Lakaniemi AM, Koskinen PEP, Nevatalo LM, Kaksonen AH, Puhakka JA (2011) Biogenic hydrogen and methane production from reed canary grass. Biomass Bioen 35:773–780

    Article  Google Scholar 

  • Laws D, Scholz RW, Shiroyama H, Susskind L, Suzuki T, Weber O (1984) Expert views on sustainability and technology implementation. Int J Sustain Dev World Ecol 11:247–261

    Article  Google Scholar 

  • Lee KS, Lin PJ, Chang JS (2006) Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int J Hydrogen Energy 31:465–472

    Article  Google Scholar 

  • Logan L (2008) Microbial fuel cells. Wiley, New Jersey

    Google Scholar 

  • Lyberatos G, Skiadas IV (1999) Modeling of anaerobic digestion—A review. Global Nest Int J 1(2):63–76

    Google Scholar 

  • Monnet F (2003) An introduction to anaerobic digestion of organic waste, Technical Reports, Scotland. Available on http://www.biogasmax.co.uk. Cited on 10 Sept 2011

  • Mu Y, Zheng XJ, Yu HQ, Zhu RF (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrogen Energy 31:780–785

    Article  Google Scholar 

  • Murphy DJ, Hall CAS, Dale M, Cleveland C (2011) Order for chaos: a preliminary protocol for determining the EROI of fuels. Sustainability 3:1888–1907

    Article  Google Scholar 

  • Nagata S (1975) Mixing: principles and applications. Wiley, New York

    Google Scholar 

  • Najafpour GD (2007) Bioprocess scale-up. In: Najafpour GD (ed) Biochemical engineering and biotechnology, cap, vol 13, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  Google Scholar 

  • Patzek TW (2004) Thermodynamics of the corn-ethanol biofuel cycle. Critical Rev Plant Sci 23(6):519–567

    Article  Google Scholar 

  • Patzek TW, Pimentel D (2006) Thermodynamics of energy production from biomass. Critical Rev Plant Sci 24(5–6):329–364

    Google Scholar 

  • Pfeffer JT, Liebman JC (1976) Energy from refuse by bioconversion, fermentation and residue disposal processes. Res Rec Conserv 1(3):295–313

    Google Scholar 

  • Röegen NG (1976) Dynamic models and economic growth. In: Energy and the economic myths. Pergamon Press, New York

    Google Scholar 

  • Röegen NG (1999) The entropy law and economic process. Harvard University Press, Cambridge

    Google Scholar 

  • Rohsenaw WM, Hartnett JP (1973) Handbook of heat transfer. McGraw-Hill Press, New York

    Google Scholar 

  • Ruggeri B, Tommasi T, Sassi G (2010) Energy balance of dark anaerobic fermentation as a tool for sustainability analysis. Int J Hydrogen Energy 35:10202–10211

    Article  Google Scholar 

  • Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Bio Bioenergy 35:1633–1645

    Article  Google Scholar 

  • Sanfilippo S, Ruggeri B (2009) LCA Alimentazione: stima del consumo energetico per la produzione, il trasporto e la preparazione del cibo in Italia. La Rivista di Scienza dell’Alimentazione 38(4):1–16

    Google Scholar 

  • Sentimenti E, Biorgi U (2006) Energia ed economia. Tpoint Eni Tecnologie 8(2):22–26

    Google Scholar 

  • SETAC (1993) Guidelines for life-cycle assessment: a code of practice. Brussels, Belgium

    Google Scholar 

  • Speece R (1983) Anaerobic biotechnology for industrial wastewater treatment. Environ Sci Technol 17:416–426

    Google Scholar 

  • Tommasi T (2011) Anaerobic biohydrogen production: experimental evaluation of design bioreactor parameters for dark biohydrogen production using organic wastes. LAP LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  • Tommasi T, Ruggeri B, Sanfilippo S (2012) Energy valorisation of residues of dark anaerobic production of Hydrogen. J Cleaner Prod 34:91–97

    Article  Google Scholar 

  • Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41(4):1413–1419

    Article  Google Scholar 

  • Wang J, Wan W (2008a) Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 33:2934–2941

    Article  Google Scholar 

  • Wang J, Wan W (2008b) Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 33:5392–5397

    Article  Google Scholar 

  • Yang M, Yu HQ, Wang G (2007) Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme Microb Technol 40:947–953

    Article  Google Scholar 

  • Zhang Y, Shen J (2006) Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrogen Energy 31:441–446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ruggeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Ruggeri, B., Sanfilippo, S., Tommasi, T. (2013). Sustainability of (H2 + CH4) by Anaerobic Digestion via EROI Approach and LCA Evaluations. In: Singh, A., Pant, D., Olsen, S. (eds) Life Cycle Assessment of Renewable Energy Sources. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5364-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5364-1_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5363-4

  • Online ISBN: 978-1-4471-5364-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics