Skip to main content
Book cover

Urolithiasis pp 375–382Cite as

Shock Wave Lithotripsy: Present Indications and Future Prospects

  • Chapter
  • First Online:
  • 183 Accesses

Abstract

This chapter describes the fundamentals of shock wave lithotripsy (SWL), the instrumentation for SWL, shock wave generation, rate of delivery and focusing, coupling of the shock wave, and stone localization. The process of fragmentation through spallation, cavitation, and comminution is described. The contemporary indications and contraindications to SWL for renal and ureteral calculi, large and staghorn calculi, and calculi in calyceal diverticula are discussed. Lithotripsy advances in the form of changes to the lithotripter, modifications to treatment strategy, and adjuncts that improve SWL safety and efficacy are described. Future technological advances are explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhong P, Preminger G. Physics of shock wave lithotripsy. In: Coe FL, Favus MJ, Pak CY, Parks JH, Preminger G, editors. Kidney stones: medical and surgical management. Philadelphia: Lippincott-Raven Publishers; 1996. p. 529–48.

    Google Scholar 

  2. Lokhandwalla M, Sturtevant B. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol. 2000;45(7):1923–40.

    Article  PubMed  CAS  Google Scholar 

  3. Zhu S, Cocks FH, Preminger GM, Zhong P. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol. 2002;28(5):661–71.

    Article  PubMed  Google Scholar 

  4. Coleman AJ, Saunders JE, Crum LA, Dyson M. Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol. 1987;13(2):69–76.

    Article  PubMed  CAS  Google Scholar 

  5. Lingeman JE, Matlaga BR, Evan AP. Surgical management of urinary lithiasis. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell’s-Walsh urology, vol. 3. 9th ed. Philadelphia: Saunders; 2007. p. 1431–507.

    Google Scholar 

  6. Willis LR, Evan AP, Connors BA, Reed G, Fineberg NS, Lingeman JA. Effects of extracorporeal shock wave lithotripsy to one kidney on bilateral glomerular filtration rate and PAH clearance in minipigs. J Urol. 1996;156(4):1502–6.

    Article  PubMed  CAS  Google Scholar 

  7. Willis LR, Evan AP, Connors BA, Fineberg NS, Lingeman JE. Effects of SWL on glomerular filtration rate and renal plasma flow in uninephrectomized minipigs. J Endourol. 1997;11(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu S, Dreyer T, Liebler M, Riedlinger R, Preminger GM, Zhong P. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode. Ultrasound Med Biol. 2004;30(5):675–82.

    Article  PubMed  Google Scholar 

  9. Chen H, Brayman AA, Bailey MR, Matula TJ. Blood vessel rupture by cavitation. Urol Res. 2010;38(4):321–6.

    Article  PubMed  Google Scholar 

  10. Freund JB, Colonius T, Evan AP. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy. Ultrasound Med Biol. 2007;33(9):1495–503.

    Article  PubMed  Google Scholar 

  11. Delvecchio F, Auge BK, Munver R, et al. Shock wave lithotripsy causes ipsilateral renal injury remote from the focal point: the role of regional vasoconstriction. J Urol. 2003;169(4):1526–9.

    Article  PubMed  CAS  Google Scholar 

  12. Munver R, Delvecchio FC, Kuo RL, Brown SA, Zhong P, Preminger GM. In vivo assessment of free radical activity during shock wave lithotripsy using a microdialysis system: the renoprotective action of allopurinol. J Urol. 2002;167(1):327–34.

    Article  PubMed  CAS  Google Scholar 

  13. Abernathy BB, Morris JS, Wilson WT, Miller GL, Preminger GM. Evaluation of residual stone fragments following lithotripsy: sonography versus KUB. In: Lingeman JE, Newman DM, editors. Shock wave lithotripsy II. New York: Plenum Press; 1989. p. 247–54.

    Google Scholar 

  14. Preminger GM. Sonographic piezoelectric lithotripsy: more bang for your buck. J Endourol. 1989;3:321–7.

    Article  Google Scholar 

  15. Rassweiler J, Kohrmann U, Heine G, Back W, Wess O, Alken P. Modulith SL 10/20 – experimental introduction and first clinical experience with a new interdisciplinary lithotriptor. Eur Urol. 1990;18(4):237–41.

    PubMed  CAS  Google Scholar 

  16. Rassweiler JJ, Knoll T, Kohrmann KU, et al. Shock wave technology and application: an update. Eur Urol. 2011;59(5):784–96.

    Article  PubMed  Google Scholar 

  17. Pishchalnikov YA, Neucks JS, VonDerHaar RJ, Pishchalnikova IV, Williams Jr JC, McAteer JA. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol. 2006;176(6 Pt 1):2706–10.

    Article  PubMed  Google Scholar 

  18. Jain A, Shah TK. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol. 2007;51(6):1680–6; discussion 1686–1687.

    Article  PubMed  Google Scholar 

  19. Preminger GM, Tiselius HG, Assimos DG, et al. 2007 Guideline for the management of ureteral calculi. J Urol. 2007;178(6):2418–34.

    Article  PubMed  Google Scholar 

  20. Patel T, Kozakowski K, Hruby G, Gupta M. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol. 2009;23(9):1383–5.

    Article  PubMed  Google Scholar 

  21. Wiesenthal JD, Ghiculete D, D’A Honey RJ, Pace KT. Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res. 2010;38(4):307–13.

    Article  PubMed  Google Scholar 

  22. el-Damanhoury H, Scharfe T, Ruth J, Roos S, Hohenfellner R. Extracorporeal shock wave lithotripsy of urinary calculi: experience in treatment of 3,278 patients using the Siemens Lithostar and Lithostar Plus. J Urol. 1991;145(3):484–8.

    PubMed  CAS  Google Scholar 

  23. Elkoushy MA, Hassan JA, Morehouse DD, Anidjar M, Andonian S. Factors determining stone-free rate in shock wave lithotripsy using standard focus of Storz Modulith SLX-F2 lithotripter. Urology. 2011;78(4):759–63.

    Article  PubMed  Google Scholar 

  24. Logarakis NF, Jewett MA, Luymes J, Honey RJ. Variation in clinical outcome following shock wave lithotripsy. J Urol. 2000;163(3):721–5.

    Article  PubMed  CAS  Google Scholar 

  25. Clayman RV, McClennan BL, Garvin TJ, Denstedt JD, Andriole GL. Lithostar: an electromagnetic acoustic shock wave unit for extracorporeal lithotripsy. J Endourol. 1989;3:307–13.

    Article  Google Scholar 

  26. Preminger GM, Assimos DG, Lingeman JE, Nakada SY, Pearle MS, Wolf Jr JS. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol. 2005;173(6):1991–2000.

    Article  PubMed  Google Scholar 

  27. Wen CC, Nakada SY. Treatment selection and outcomes: renal calculi. Urol Clin North Am. 2007;34(3):409–19.

    Article  PubMed  Google Scholar 

  28. Albala DM, Assimos DG, Clayman RV, et al. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J Urol. 2001;166(6):2072–80.

    Article  PubMed  CAS  Google Scholar 

  29. Zhong P, Preminger GM. Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. J Endourol. 1994;8(4):263–8.

    Article  PubMed  CAS  Google Scholar 

  30. Ferrandino MN, Pierre SA, Simmons WN, Paulson EK, Albala DM, Preminger GM. Dual-energy computed tomography with advanced postimage acquisition data processing: improved determination of urinary stone composition. J Endourol. 2010;24(3):347–54.

    Article  PubMed  Google Scholar 

  31. Zilberman DE, Ferrandino MN, Preminger GM, Paulson EK, Lipkin ME, Boll DT. In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol. 2010;184(6):2354–9.

    Article  PubMed  CAS  Google Scholar 

  32. Resit-Goren M, Dirim A, Ilteris-Tekin M, Ozkardes H. Time to stone clearance for ureteral stones treated with extracorporeal shock wave lithotripsy. Urology. 2011;78(1):26–30.

    Article  PubMed  Google Scholar 

  33. Schuler TD, Shahani R, Honey RJ, Pace KT. Medical expulsive therapy as an adjunct to improve shockwave lithotripsy outcomes: a systematic review and meta-analysis. J Endourol. 2009;23(3):387–93.

    Article  PubMed  Google Scholar 

  34. Seitz C, Liatsikos E, Porpiglia F, Tiselius HG, Zwergel U. Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol. 2009;56(3):455–71.

    Article  PubMed  Google Scholar 

  35. Turk TM, Jenkins AD. A comparison of ureteroscopy to in situ extracorporeal shock wave lithotripsy for the treatment of distal ureteral calculi. J Urol. 1999;161(1):45–6; discussion 46–47.

    Article  PubMed  CAS  Google Scholar 

  36. Becht E, Moll V, Neisius D, Ziegler M. Treatment of prevesical ureteral calculi by extracorporeal shock wave lithotripsy. J Urol. 1988;139(5):916–8.

    PubMed  CAS  Google Scholar 

  37. Rodrigues Netto Junior N, Lemos GC, Claro JF. In situ extracorporeal shock wave lithotripsy for ureteral calculi. J Urol. 1990;144(2 Pt 1):253–4.

    PubMed  CAS  Google Scholar 

  38. Cohen TD, Preminger GM. Management of calyceal calculi. Urol Clin North Am. 1997;24(1):81–96.

    Article  PubMed  CAS  Google Scholar 

  39. Renner C, Rassweiler J. Treatment of renal stones by extracorporeal shock wave lithotripsy. Nephron. 1999;81 Suppl 1:71–81.

    Article  PubMed  Google Scholar 

  40. Jones JA, Lingeman JE, Steidle CP. The roles of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy in the management of pyelocaliceal diverticula. J Urol. 1991;146(3):724–7.

    PubMed  CAS  Google Scholar 

  41. Marguet CG, Young MD, Maloney M, et al. Improved stone comminution and simultaneously reduced tissue injury with an upgraded electrohydraulic lithotripter: in vivo studies. Paper presented at American Urological Association Annual Meeting, San Francisco, 2004.

    Google Scholar 

  42. Matula TJ, Hilmo PR, Bailey MR. A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices. J Acoust Soc Am. 2005;118(1):178–85.

    Article  PubMed  Google Scholar 

  43. De Sio M, Autorino R, Quarto G, et al. A new transportable shock-wave lithotripsy machine for managing urinary stones: a single-centre experience with a dual-focus lithotripter. BJU Int. 2007;100(5):1137–41.

    PubMed  Google Scholar 

  44. Sheir KZ, Zabihi N, Lee D, et al. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation. J Urol. 2003;170(6 Pt 1):2190–4.

    Article  PubMed  Google Scholar 

  45. Sheir KZ, Lee D, Humphrey PA, Morrissey K, Sundaram CP, Clayman RV. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: in vivo tissue effects. Urology. 2003;62(5):964–7.

    Article  PubMed  Google Scholar 

  46. Sheir KZ, El-Diasty TA, Ismail AM. Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: the first prospective clinical study. BJU Int. 2005;95(3):389–93.

    Article  PubMed  Google Scholar 

  47. Pace KT, Ghiculete D, Harju M, Honey RJ. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol. 2005;174(2):595–9.

    Article  PubMed  Google Scholar 

  48. Chacko J, Moore M, Sankey N, Chandhoke PS. Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J Urol. 2006;175(4):1370–3; discussion 1373–4.

    Article  PubMed  Google Scholar 

  49. Koo V, Beattie I, Young M. Improved cost-effectiveness and efficiency with a slower shockwave delivery rate. BJU Int. 2010;105(5):692–6.

    Article  PubMed  Google Scholar 

  50. Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol. 2008;179(1):194–7; discussion 197.

    Article  PubMed  Google Scholar 

  51. Zhou Y, Cocks FH, Preminger GM, Zhong P. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol. 2004;172(1):349–54.

    Article  PubMed  Google Scholar 

  52. Maloney ME, Marguet CG, Zhou Y, et al. Progressive increase of lithotripter output produces better in-vivo stone comminution. J Endourol. 2006;20(9):603–6.

    Article  PubMed  Google Scholar 

  53. Lambert EH, Walsh R, Moreno MW, Gupta M. Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during extracorporeal shock wave lithotripsy: a prospective randomized trial. J Urol. 2010;183(2):580–4.

    Article  PubMed  Google Scholar 

  54. Willis LR, Evan AP, Connors BA, Handa RK, Blomgren PM, Lingeman JE. Prevention of lithotripsy-induced renal injury by ­pretreating kidneys with low-energy shock waves. J Am Soc Nephrol. 2006;17(3):663–73.

    Article  PubMed  Google Scholar 

  55. Handa RK, Bailey MR, Paun M, et al. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int. 2009;103(9):1270–4.

    Article  PubMed  Google Scholar 

  56. Ogiste JS, Nejat RJ, Rashid HH, Greene T, Gupta M. The role of mannitol in alleviating renal injury during extracorporeal shock wave lithotripsy. J Urol. 2003;169(3):875–7.

    Article  PubMed  Google Scholar 

  57. Delvecchio FC, Brizuela RM, Khan SR, et al. Citrate and vitamin E blunt the shock wave-induced free radical surge in an in vitro cell culture model. Urol Res. 2005;33(6):448–52.

    Article  PubMed  CAS  Google Scholar 

  58. Al-Awadi KA, Kehinde EO, Loutfi I, et al. Treatment of renal calculi by lithotripsy: minimizing short-term shock wave induced renal damage by using antioxidants. Urol Res. 2008;36(1):51–60.

    Article  PubMed  CAS  Google Scholar 

  59. Porpiglia F, Destefanis P, Fiori C, Scarpa RM, Fontana D. Role of adjunctive medical therapy with nifedipine and deflazacort after extracorporeal shock wave lithotripsy of ureteral stones. Urology. 2002;59(6):835–8.

    Article  PubMed  CAS  Google Scholar 

  60. Agarwal MM, Naja V, Singh SK, et al. Is there an adjunctive role of tamsulosin to extracorporeal shockwave lithotripsy for upper ureteric stones: results of an open label randomized nonplacebo controlled study. Urology. 2009;74(5):989–92.

    Article  PubMed  Google Scholar 

  61. Cicerello E, Merlo F, Gambaro G, et al. Effect of alkaline citrate therapy on clearance of residual renal stone fragments after extracorporeal shock wave lithotripsy in sterile calcium and infection nephrolithiasis patients. J Urol. 1994;151(1):5–9.

    PubMed  CAS  Google Scholar 

  62. Williams Jr JC, Kim SC, Zarse CA, McAteer JA, Lingeman JE. Progress in the use of helical CT for imaging urinary calculi. J Endourol. 2004;18(10):937–41.

    Article  PubMed  Google Scholar 

  63. Perks AE, Schuler TD, Lee J, et al. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology. 2008;72(4):765–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Lipkin M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Lipkin, M.E., Preminger, G.M. (2012). Shock Wave Lithotripsy: Present Indications and Future Prospects. In: Talati, J., Tiselius, HG., Albala, D., YE, Z. (eds) Urolithiasis. Springer, London. https://doi.org/10.1007/978-1-4471-4387-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4387-1_46

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4383-3

  • Online ISBN: 978-1-4471-4387-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics