Skip to main content

Mix and Match Features in the ImageRover Search Engine

  • Chapter
Principles of Visual Information Retrieval

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

Ideally, an image search engine should support a broad range of possible queries, topics, users, and similarity measures. To date, the general approach in most image search engines has been to deploy an arsenal of modules that compute a broad variety of image decompositions and discriminants: color histograms, edge orientation histograms, texture measures, shape invariants, eigen decompositions, wavelet coefficients, text cues extracted from the text surrounding the image in the WWW document, etc. These features are precomputed during a WWW crawl, and stored for subsequent queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardizzone E and La Cascia, M, “Automatic Video Database Indexing and Retrieval”, Multimed Tools Applic, 4(1), pp. 29–56, 1997.

    Article  Google Scholar 

  2. Arya, S, Mount, DM, Netanyahu, NS, Silverman, R, and Wu, AY, “An Optimal Algorithm for Approximate Nearest Neighbour Searching in Fixed Dimensions”, ACM SIAM Symposium on Discrete Algorithms, pp. 573-582, 1994.

    Google Scholar 

  3. Berry, MW and Dumais, ST, “Using Linear Algebra for Intelligent Information Retrieval”, Technical Report UT-CS-94-270, University of Tennessee, Computer Science Department, December, 1994.

    Google Scholar 

  4. Brodatz, P, Textures: a Photographic Album for Artists and Designers, Dover Publications Inc, New York, NY, 1966.

    Google Scholar 

  5. Cox, IJ, Miller, ML, Omohundro, SM, and Yanilos, PN, “Pichunter: Bayesian Relevance Feedback for Image Retrieval”, Int. Conf. on Pattern Recognition, Wien, Austria, 1996.

    Google Scholar 

  6. Deerwester, S, Dumais, ST, Landauer, TK, Furnas, GW, and Harshman, RA, “Indexing by Latent Semantic Analysis”, J Soc Inform Sci, 41(6), pp. 391–407, 1990.

    Article  Google Scholar 

  7. Duda, RO and Hart, PE, Pattern Classification and Scene Analysis, John Wiley & Sons, 1973.

    Google Scholar 

  8. Dumais, ST, “Improving the Retrieval of Information from External Sources”, Behav Res Meth Instrum Computers, 23(2), pp. 229–236, 1991.

    Article  Google Scholar 

  9. Flicker, M, Sawhney, H, Niblack, W, Ashley, J, Huang, Q, Dom, B, Gorkani, M, Hafner, J, Lee, D, Petkovic, D, Steele, D, and Yanker, P, “Query by Image and Video Content: The QBIC System”, IEEE Computer, 28(9), pp. 23–32, 1995.

    Article  Google Scholar 

  10. Francos, JM, Meiri, A, and Porat, B, “A Unified Texture Model Based on a 2-D Wold Like Decomposition”, IEEE Trans Sig Process, pp. 2665-2678, August, 1993.

    Google Scholar 

  11. Frankel, C, Swain, M, and Athitsos, V, “Webseer: An Image Search Engine for the World Wide Web”, Technical Report 96-14, University of Chicago, 1996.

    Google Scholar 

  12. Freeman, W and Adelson, EH, “The Design and Use of Steerable Filters. IEEE Trans Patt Anal Mach Intell, 13(9), pp. 891–906, September, 1991.

    Article  Google Scholar 

  13. Fukunaga, K and Koontz, W, “Application of the Karhunen-Loeve Expansion to Feature Selection and Ordering”, IEEE Trans Commun, 19 (4), 1970.

    Google Scholar 

  14. Gargi, U and Kasturi, R, “An Evaluation of Color Histogram Based Methods in Video Indexing”, International Workshop on Image Databases and Multimedia Search, August, 1996.

    Google Scholar 

  15. Gevers T and Smeulders, A, “A Comparative Study of Several Color Models for Color Image Invariant Retrieval”, Image Databases and Multimedia Search Workshop, pp. 17-26, August, 1996.

    Google Scholar 

  16. Gorkani, MM and Picard, RW, “Texture Orientation for Sorting Photos at a Glance”, IEEE Int. Conf. on Pattern Recognition, Jerusalem, 1994.

    Google Scholar 

  17. Gupta, A, “Visual Information Retrieval Technology: A Virage Perspective”, Technical report, Virage Inc, 177 Bovet Rd, Suite 540, San Mateo CA, 1996.

    Google Scholar 

  18. Hunt, R, Measuring Color, John Wiley & Sons, 1989.

    Google Scholar 

  19. Jain, AK and Vailaya, A, “Shape-Based Retrieval: A Case Study With Trademark Image Databases”, Technical Report MSU-CPS-97-31, Michigan State University, November, 1997.

    Google Scholar 

  20. La Cascia, M, Sethi, S, and Sclaroff, S, “Combining Textual and Visual Clues for Content-Based Image Retrieval on the World Wide Web”, IEEE Int. Workshop on Content-based access of Image and Video Libraries, June, 1998.

    Google Scholar 

  21. Liu, F and Picard, RW, “Periodocity, Directionality and Randomness: Wold features for Image Modeling and Retrieval”, IEEE Trans Patt Anal Mach Intell, 18(7), pp. 722–733, 1996.

    Article  Google Scholar 

  22. Minka, TP and Picard, RW, “Interactive Learning Using a Society of Models”, Patt Recogn, 30 (4), 1997.

    Google Scholar 

  23. Murase, H and Nayar, S, “Visual Learning and Recognition of 3-D Objects from Appearance”, Int J Computer Vision, 14(1), pp. 5–24, January, 1995.

    Article  Google Scholar 

  24. Nastar, C, Mitschke, M, and Meilhac, C, “Efficient Query Refinement for Image Retrieval”, IEEE Conf. Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998.

    Google Scholar 

  25. Niblack, W, Barber, R, Equitz, W, Flickner, M, Glasman, E, Petkovic, D, Yanker, P, and Faloutsos, C, “The QBIC Project: Querying Images by Content Using Color, Texture and Shape”, IS&T/SPIE Symposium on Electronic Imaging: Science and Technology — Storage Retrieval for Image and Video Databases I, San Jose, CA, 1993.

    Google Scholar 

  26. Ortega, M, Rui, Y, Chakrabarti, K, Mehrotra, S, and Huang, TS, “Supporting Similarity Queries in MARS”, ACM Multimedia, 1997.

    Google Scholar 

  27. Pass, G, Zabih, R, and Miller, J, “Comparing Images using Color Coherence Vectors”, ACM Multimedia, 1996.

    Google Scholar 

  28. Pentland, A, Picard, RW, and Sclaroff, S, “Photobook: Tools for Content-Based Manipulation of Image Databases”, SPIE: Storage and Retrieval Image and Video Database II, 1994.

    Google Scholar 

  29. Picard, RW and Minka, TP, “Vision Texture for Annotation”, Multimed Syst, 3(3), pp. 3–14, 1995.

    Article  Google Scholar 

  30. Rao, AR and Lohse, GL, “Towards a Texture Naming System: Identifying Relevant Dimensions of Texture”, IEEE Conf. on Visualization, San Jose, CA, October, 1993.

    Google Scholar 

  31. Rowe, NC and Frew, B, “Finding Photograph Captions Multimodally on the World Wide Web”, AAAI Spring Symposium on Intelligent Integration and Use of Text, Image, Video, and Audio Corpora, March, 1997.

    Google Scholar 

  32. Rui, Y, Huang, TS, and Mehrotra, S, “Content-Based Image Retrieval with Relevance Feedback in MARS”, IEEE Int. Conf. on Image Processing, Santa Barbara CA, 1997.

    Google Scholar 

  33. Salton, G and McGill, MJ, Introduction to Modern Information Retrieval, McGraw-Hill, 1989.

    Google Scholar 

  34. Sclaroff, S, La Cascia, M, Taycher, L, and Sethi, S, “Unifying Textual and Visual Cues for Content-Based Image Retrieval on the World Wide Web”, Computer Vision Image Understand, 75(1/2), pp. 86–98, July/August, 1999.

    Article  Google Scholar 

  35. Sclaroff, S, Taycher, L, and La Cascia, M, “ImageRover: A Content-Based Image Browser for the World Wide Web”, IEEE Int. Workshop on Content-based access of Image and Video Libraries, June, 1997.

    Google Scholar 

  36. Smith, JR and Chang, SF, “Tools and Techniques for Color Image Retrieval”, IS&T SPIE: Storage and Retrieval Image and Video Database IV, San Jose, CA, 1996.

    Google Scholar 

  37. Smith, JR and Chang, SF, “Visually Searching the Web for Content”, IEEE Multimed, 4(3), pp. 12–20, July, 1997.

    Article  Google Scholar 

  38. Swain, M and Ballard, D, “Color Indexing”, Int J Computer Vision, 7 (11), 1991.

    Google Scholar 

  39. Tamura, H, Mori, S, and Yamawaki, T, “Textural Features Corresponding to Visual Perception”, IEEE Trans Syst Man Cybern, 8 (6), 1978.

    Google Scholar 

  40. White, DA and Jain, R, “Algorithms and Strategies for Similarity Retrieval”, Technical Report VCL-96-101, University of California, San Diego, July, 1996.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Sclaroff, S., La Cascia, M., Sethi, S., Taycher, L. (2001). Mix and Match Features in the ImageRover Search Engine. In: Lew, M.S. (eds) Principles of Visual Information Retrieval. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-3702-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3702-3_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-868-3

  • Online ISBN: 978-1-4471-3702-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics