Skip to main content

The Fate of Chemicals in Soil

  • Chapter
Biodegradation

Part of the book series: Springer Series in Applied Biology ((SSAPPL.BIOLOGY))

  • 342 Accesses

Abstract

The introduction of organic chemicals to the environment can cause a variety of ecological problems. One of the most serious of these is the accumulation of chemical agents in an ecosystem. Routes for their introduction are diverse and include direct dumping, accidental spillage, run-off, leaching from containment sites or vessels, and intentional application (e. g. agriculture). The types of chemicals are equally varied and range from industrial and household solvents to crude and refined oils (Calabrese and Kostecki 1989) and pesticides (Biggar and Seiber 1987; Grover 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anon (1990) Guide-lines for the testing of agrochemicals as part of the licensing procedure, Pt 4. Federal Biological Research Centre for Agriculture and Forestry, Department of Agrochemicals and Application Technology of the Federal Biological Research Centre, Braunscweig, FRG

    Google Scholar 

  • Ajuhla LR, Lehman OR (1983) The extent and nature of rainfall-soil interaction in the release of soluble chemicals to run-off J Environ Qual 12:34–41

    Google Scholar 

  • Albanis T, Pomonis P, Sdoukos A (1988) Describing movement of three pesticides in soil using CSTR in series model Water Air Soil Pollut 39:293–302

    CAS  Google Scholar 

  • Allen RA, Walker A (1987) The influence of soil properties on the rates of degradation of metamitron, metazachlor, and metribuzin Pestic Sci 18:95–111

    Article  CAS  Google Scholar 

  • Anderson JP, Domsch HH (1980) Relationships between herbicide concentration and the rates of enzymatic degradation of 14-C Diallate and 14-C, Triallate Arch Environ Contam Toxicol 9(3):259–268

    Article  CAS  Google Scholar 

  • Armstrong DE, Konrad JG (1974) Nonbiological degradation of pesticides. In: Guenzi W (ed) Pesticides in soil and water. Soil Science Society of America, Madison, pp 123–31

    Google Scholar 

  • Audus LJ (1950) Biological detoxification of 2,4-dichlorophenoxyacetic acid in soils: isolation of an effective organism Nature 166:365–67

    Article  Google Scholar 

  • Bailey GW, Swank RR Jr, Nicholson HP (1974) Predicting pesticide run-off from agricultural land: A conceptual model J Environ Qual 3:95–102

    Article  CAS  Google Scholar 

  • Barry DA, Sposito G 1988) Application of the convection-dispersion model to solute transport in finite soil columns. Soil Sci Soc Am J 52:3–9

    Article  CAS  Google Scholar 

  • Biggar JW, Seiber JN (eds) (1987) Fate of pesticides in the environment. Agricultural Experiment Station, Division of Agriculture and Natural Resources, University of California, Publication 3320, Oakland Ca

    Google Scholar 

  • Boesten JJTI, van der Pas LJT (1988) Modelling adsorption/desorption kinetics of pesticides in a soil suspension Soil Sci 146:221–231

    Article  CAS  Google Scholar 

  • Boesten JJTI, van der Pas LJT, Smelt JH (1989) Field test of a mathematical model for nonequilibrium transport of pesticides in soil. Pestic Sci 25:187–203

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley Pestic Sci 13:495–501

    Article  CAS  Google Scholar 

  • Calabrese EJ, Kostecki PT (1989) Petroleum contaminated soils, vol 2 Lewis Publisher Inc, Chelsea MN, USA

    Google Scholar 

  • Campbell R (1983) The structure and dynamics of microbial populations in soil. In: Wilkinson JF (ed) Microbial ecology, 2nd ed Blackwell Scientific Publications Ltd, Oxford

    Google Scholar 

  • Carsel RF, Smith CH, Mulkey LA, Dean JD, Jowise PP (1984) User’s manual for the pesticide root zone model, Release 1, United States Environmental Protection Agency. EPA-600/3-84-109

    Google Scholar 

  • Castro TF, Yoshida T (1974) Effect of organic matter on the biodegradation of some organochlorine insecticides in submerged soils. Soil Sci Plant Nutr 20:363–370

    Article  CAS  Google Scholar 

  • Cho DY, Ponnamperuma FN (1971) Influence of soil temperature on the chemical kinetics of flooded soils and the growth of rice. Soil Sci 112: 184–190

    Article  CAS  Google Scholar 

  • Cohen SZ, Eiden C, Lorber MN (1986) Monitoring groundwater for pesticides in the U.S.A. In: Garner WY, Honeycutt RC, Nigg HN (eds) Evaluation of pesticides in groundwater. ACS Symposium No 315, American Chemical Society, Washington DC

    Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas, II. Uptake and translocation of phosphorus, zinc and sulfur New Phytol. 81:43–52

    Article  CAS  Google Scholar 

  • Crosby DG, Wong AS (1977) Environmental degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin Science 195:1337–38

    Article  PubMed  CAS  Google Scholar 

  • Darcy H (1856) Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris

    Google Scholar 

  • Dempster JP (1987) Effects of pesticides on wildlife and priorities in future studies. In: Brent KJ and Atkin RK (eds) Rational pesticide use. Cambridge University Press, Cambridge, pp 17–27

    Google Scholar 

  • Eagle DJ (1983) Matching herbicide dose to soil type In: Pesticide reviews, MAFF Reference book 347. HMSO London

    Google Scholar 

  • Emmerich WE, Woolhiser DA, Shirley ED (1989) Comparison of lumped and distributed models for chemical transport by surface runoff J Environ Qual 18:120–126

    Article  CAS  Google Scholar 

  • Farmer WJ, Aochi Y (1987) Chemical conversion of pesticides in the soil-water environment. In: Biggar JW and Seiber JN (eds) Proceedings of a technical seminar, Fate of pesticides in the environment. Agriculture Experiment Station, Division of Agriculture and Natural Resources, University of California, Publication 3320, pp 69-74

    Google Scholar 

  • Frederickson JK, Bolton H, Bentjen SA, McFadden KM, Wi SW, van Voris P (1990) Evaluation of intact soil-core microcosms for determining potential impacts on nutrient dynamics by genetically engineered microorganisms Environ Toxicol Chem 9:551–558

    Article  Google Scholar 

  • Freeze and Cherry (1979) Groundwater. Prentice-Hall Inc, Englewood Cliffs, NJ USA

    Google Scholar 

  • Gile JD, Collins JC, Gillet JW (1979) The soil core microcosm-A potential screening tool. United States Environmental Protection Agency Report. EPA-600/3-79-089

    Google Scholar 

  • Goring CAI (1972) Agricultural chemicals in the environment: A quantitative viewpoint In: Goring CAI and Hamaker JW (eds) Organic chemicals in the soil environment, vol 2 Marcel Dekker Inc, NY USA pp 793–878

    Google Scholar 

  • Green RE, Khan MA (1987) Pesticide movement in soil: Mass flow and molecular diffusion In: Biggar JW and Seiber JN (eds) Proceedings of a technical seminar, Fate of pesticides in the environment. Agricultural Research Station, Division of Agriculture and Natural Resources, University of California, Publication No 3320 pp 87-92

    Google Scholar 

  • Grenney WJ, Caupp CL, Sims RC (1987) A mathemalical model for the fate of hazardous substances in soil: model description and experimental results. Hazard. Waste Hazard. Mat 4:223–239

    Article  CAS  Google Scholar 

  • Grover R (1989) Environmental chemistry of herbicides, vol 1 CRC Press, Boca Raton, Fl, USA

    Google Scholar 

  • Grover R, Smith AE, Shewchuk SR, Cessna AJ, Hunter JH (1988) Fate of trifluralin and triallate applied as a mixture to a wheat field J Environ. Qual 17:543–550

    CAS  Google Scholar 

  • Hance RJ (1989) Adsorption and bioavailability In: Grover R (ed) Environmental chemistry of herbicides, vol 1 CRC Press, Boca Raton, Fla, pp 1–20

    Google Scholar 

  • Hartley GS, Graham-Bryce IJ (1980) Physical principles of pesticide behaviour Vol 1 Academic Press, London

    Google Scholar 

  • Hodapp DM, Winterlin W (1989) Pesticide Degradation in model soil evaporation beds Bull Environ Contam Toxicol. 43:36–44

    Article  PubMed  CAS  Google Scholar 

  • Hoff RM, Dupont RR, Moore WM, McLean JE (1988) Evaluation of the use of solar radiation for the decontamination of soil residues. In: Proceedings of the 81st APCA Annual Meeting, Paper 88/6A.6 pp 45-88

    Google Scholar 

  • Jayaraman J, Celino LP, Lee KH, Mohamad RB, Sun J, Tayaputch N, Zhang Z (1989) Fate of carbofuran in rice-fish model ecosystem-an international study. Water Air Soil Pollut 45:371–375

    Article  CAS  Google Scholar 

  • Jury WA, Grover R, Spencer WF, Farmer WJ (1980) Modelling vapour losses of soil-incorporated Triallate. Soil Sci Soc Am J 44:445–449

    Article  CAS  Google Scholar 

  • Jury WA, Farmer WA, Spencer WF (1984a) Behaviour Assessment Model for trace organics in soil: II. Chemical classification and parameter sensitivity. J Environ Qual 13:567–572

    Article  Google Scholar 

  • Jury WA, Farmer WF, Spencer WJ (1984b) Behviour assessment model for trace organics in soil: III. Application of screening model J Environ Qual 13:573–579

    Article  CAS  Google Scholar 

  • Jury WA, Focht DA, Farmer WJ (1987) Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation J Environ Qual 16:422–428

    Article  CAS  Google Scholar 

  • Kohnke H (1968) Soil physics, McGraw Hill Publishers Inc, London UK

    Google Scholar 

  • Kördel W, Herrchen M, Klein M, Klein W (1988) Lysimeter experiments and simulation models to evaluate the potential of pesticides to leach into groundwater. Brighton crop protection conference-Pests and diseases 2:687–692

    Google Scholar 

  • Leonard RA (1989) Herbicides in surface waters In: Grover R (ed) Environmental chemistry of herbicides, Vol 1 CRC Press, Boca Raton, Fl, USA pp 45–88

    Google Scholar 

  • Leonard RA, Langdale GW, Fleming WG (1979) Herbicide runoff from upland Piedmont watersheds — data and implications for modeling pesticide transport. J Environ Qual 8:223–229

    Article  CAS  Google Scholar 

  • Loague KM, Green RE, Liu CC, Liang TC (1989) Simulation of organic chemical movement in Hawaii soils with PRZM: 1. Preliminary results for ethylene dibromide Pac Sci 43:67–95

    CAS  Google Scholar 

  • Loos MA (1975) Herbicides — Chemistry, degradation and mode of action, Vol 1 Kearney PC, Kaufman DD (eds) Marcel Dekker, New York pp 1–128

    Google Scholar 

  • Lupi C (1989) Modelling behaviour of pollutants in soil for risk assessment purposes, NATO challenges for a modern society 12:89–110

    CAS  Google Scholar 

  • Lupi C, Bucchi AR, Piccioni A, Zapponi GA (1988) The environmental behaviour of chemicals in soil: atrazine as an example, Ecotoxicology and environmental safety 16:133–142

    Article  CAS  Google Scholar 

  • Mackay D, Stiver W (1990) Predictability of herbicide behaviour. In Grover R, Cessna AJ (eds) Environmental Chemistry of Herbicides, vol 2, CRC Press, Boca Raton, Fl, USA pp 281–297

    Google Scholar 

  • McEwen FL, Stephenson GR (1979) The use and significance of pesticides in the environment. John Wiley and Sons Ltd, NY

    Google Scholar 

  • Meriaux S (1982) Soil and water In: Bonneau M and Souchier B (eds) Constituents and properties of soils. Academic Press, London, pp 304–354

    Google Scholar 

  • Miller GT (1975) Living in the environment, concepts, problems and alternatives. Wadsworth Publishers Ltd, Belmont, Calif. USA

    Google Scholar 

  • Miller GC, Herbert VR (1987) Environmental photodecomposition of pesticides In: Biggar JW and Seiber JN (eds) Proceedings of a technical seminar, Fate of pesticides in the environment. Agricultural Experiment Station, Division of Agriculture and Natural Resources, University of California, Publication 3320, pp 75-86

    Google Scholar 

  • Monreal CM, McGill WB (1989) Kinetic analysis of soil microbial components under perturbed and steady-state conditions in a gray luvisol. Soil Biol Biochem 21:681–688

    Article  CAS  Google Scholar 

  • Nakagawa M, Crosby DG (1974) Photonucleophilic reaction of nitrofen. J Agrie Food Chem 22:930–33

    Article  CAS  Google Scholar 

  • Nash R (1989) Models for estimating pesticide dissipation in soil and vapour decline in air Chemosphere 18:2375–2381

    CAS  Google Scholar 

  • Nicholls PH, Walker A, Baker RJ (1982) Measurement and simulation of the movement and degradation of atrazine and metribuzin in a fallow soil Pestic Sci 12:484–494

    Article  Google Scholar 

  • Novotny V, Chesters G (1981) Handbook of nonpoint pollution: sources and management. Environmental Engineering Ser, van Nostrand Rheinhold NY

    Google Scholar 

  • Padilla F, LaFrance P, Robert C, Villeneuve J-P (1988) Modeling the transport and the fate of pesticides in the unsaturated zone considering temperature effects Eco Model. 44:73–88

    Article  CAS  Google Scholar 

  • Racke KD, Coates JR (1988) Enhanced degradation and the comparative fate of carbamate insecticides in soil. J Agric Food Chem 36:1067–1072

    Article  CAS  Google Scholar 

  • Rao PSC, Jessup RE, Davidson JM (1989) Mass flow and dispersion In: Grover, R. (ed) Environmental chemistry of herbicides, Vol 1 CRC Press, Boca Raton, Fla pp 21–44

    Google Scholar 

  • Ritchie JT, Kissel DE, Burnett E (1972) Water movement in undisturbed swelling clay soil. Soil Sci Soc Am Proc 36:874–79

    Article  Google Scholar 

  • Ruzo LO (1982) Photochemical reactions of the synthetic pyrethroids. In: Hutson DH and Roberts TR (eds) Progress in pesticide chemistry. John Wiley and Sons Ltd pp 1-33

    Google Scholar 

  • Schuphan I, Scharer E, Heise M, Ebing W (1987) Use of laboratory model ecosystems to evaluate quantitatively the behaviour of chemicals. In Pesticide Science Biotechnology, Proc Int Cong Pestic Chem 6th, pp 437-444

    Google Scholar 

  • Seiber JN (1987) Solubility, partition coefficient and bioconcentration factor. In: Biggar JW and Seiber JN (eds) Fate of pesticides in the environment. Agricultural Experiment Station, Division of Agriculture and Natural Resources, University of California, Publication 3320, Oakland, Ca pp 53–59

    Google Scholar 

  • Seiber JN, Cathan MP, Berril CR (1978) Loss of carbofuran from rice paddy water: Chemical and physical factors. J Environ Sci Health 13B: 131–140

    Google Scholar 

  • Sethunathan N, MacRae IC (1969) Persistence and biodegradation of diazanon in submerged soils. J Agrie Food Chem 17:221–225

    Article  CAS  Google Scholar 

  • Sethunathan N, Adhya TK, Raghu K (1982) Microbial degradation of pesticides in tropical soils In: Matsumura F and Krishna-Murti CR (eds) Biodegradation of pesticides. Plenum Press, New York NY pp 89–109

    Google Scholar 

  • Shaaban Z, ElPrince AM (1989) A simulation model for the fate of pesticide residues in a field soil Plant and Soil 114:187–195

    Article  CAS  Google Scholar 

  • Sleep BE, Sykes JF (1989) Modelling the transport of volatile organics in variably saturated media. Water Resources Res 25:81–92

    Article  CAS  Google Scholar 

  • Smith AE (1988) Transformations in soil. In: Grover R (ed) Environmental chemistry of herbicides, Vol 1 CRC Press, Boca Raton, Ha pp 171–200

    Google Scholar 

  • Smith AE, Milward LJ (1985) Loss of the herbicide Triallate from a clay soil containing aged a freshly applied residues Bull Contam Toxicol 35:723–728

    Article  CAS  Google Scholar 

  • Smith CN, Leonard RA, Langdale GW, Bailey GW (1978) Transport of agricultural chemicals from small upland Piedmont watersheds, US Environmental Protection Agency Rep EPA-600/3-78-056, US Government Printing Office, Washington DC

    Google Scholar 

  • Spencer WF (1987) Volatilisation of pesticide residues In: Biggar JW and Seiber JN (eds) Proceedings of a technical seminar, Fate of pesticides in the environment. Agricultural Research Station, Division of Agriculture and Natural Resources, University of California, Publication No 3320 pp 61-68

    Google Scholar 

  • Sunstrom G, Ruzo LO (1978) Photochemical transformation of pollutants in water. Pergamon Ser Environ Sci 1:205–22

    Google Scholar 

  • Taylor AW, Glotfelty DE (1988) Evaporation from soil and crops In: Grover R (ed) Environmental chemistry of herbicides, vol 2 CRC Press, Boca Raton, Fla pp 89–130

    Google Scholar 

  • van der Zweep J (1960) The persistence of some important herbicides in the soil. In: Woodford EK and Sagar GR (eds) Herbicides and the soil. Blackwell Scientific Publication, Oxford pp 79–86

    Google Scholar 

  • van Genuchten MT, Wagenet RJ (1989) Two-site/Two-region models for pesticide transport and degradation: theoretical development and analytical solutions. Soil Sci Soc Am J 53:1303–1309

    Article  Google Scholar 

  • van Voris P (1985) Experimental terrestrial soil-core microcosm test protocol, United States Environmental Protection Agency Report EPA/600/3-85/047, USEPA, Corvallis Or

    Google Scholar 

  • van Voris P, Tolle DA, Arthur MF, Chesson J (1985) Terrestrial microcosms: Applications, validation and cost-benefit analysis. In Cairns J (ed) Multispecies Toxicity Testing. Pergamon Press Ltd, NY, pp 117–142

    Google Scholar 

  • Villeneuve J-P, LaFrance P, Banton O, Frechette P, Robert C (1988) A sensitivity analysis of adsorption and degradation parameters in the modelling of pesticide transport in soils. J Contam Hydrology 3:77–96

    Article  CAS  Google Scholar 

  • Wadleigh CH, Dyal RS (1970) In: Blesser RE (ed) Agronomy and health ASA Spec Publ No. 16 pp 9-19

    Google Scholar 

  • Walker A (1973) Vertical distribution of herbicides in soil and their availability to plant: treatment of different proportions of the total root system. Weed Res 13:416–421

    Article  CAS  Google Scholar 

  • Walker A (1974) A simulation model for prediction of herbicide persistence. J Environ Qual 3:396–401

    Article  CAS  Google Scholar 

  • Walker A (1978) Simulation of the persistence of eight soil-applied herbicides. Weed Res 18:305–313

    Article  CAS  Google Scholar 

  • Walker A, Cotterill EG, Welch SJ (1989) Adsorption and degradation of chorsulfuron and metsulfuron-methyl in soils from different depths. Weed Res. 29:281–287

    Article  CAS  Google Scholar 

  • Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields: A review. J Environ Qual 7:459–470

    Article  CAS  Google Scholar 

  • White RE (1985) The influence of macropores on the transport of dissolved and suspended matter through soil. Adv Soil Sci 3:95–120

    Article  Google Scholar 

  • Wierenga PJ, van Genuchten MT (1989) Solute transport through small and large unsaturated soil columns Groundwater 27:35–42

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mackay, N., Betts, W.B. (1991). The Fate of Chemicals in Soil. In: Betts, W.B. (eds) Biodegradation. Springer Series in Applied Biology. Springer, London. https://doi.org/10.1007/978-1-4471-3470-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3470-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3472-5

  • Online ISBN: 978-1-4471-3470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics