Skip to main content

Exercise Programming and Control System of the Leg Rehabilitation Robot RRH1

  • Conference paper
  • First Online:
Robot Motion and Control 2011

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 422))

  • 3251 Accesses

Abstract

A robot for rehabilitation of the lower extremities has been developed at the Technical University of Łódź (TUL) to allow early treatment of patients after injury or in coma. The device is designed to exercise patients lying in their beds and can fit most of hospital appliances. The main advantage over existing similar solutions is that it provides simultaneous two-plane motion exercises for the knee and the hip. One of the methods for programming the exercises is following the therapist’s movements and recording trajectories. Compliance control applied to each axis allows detecting the patient’s force counteraction and muscle spasticity. Additionally, various protection systems that allow the robot to be used for rehabilitation therapy of persons with locomotive disabilities are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, S.K., Banala, S.K., Mankala, K., Sangwan, V., Scholz, J.P., Krishnamoorthy, V., Hsu, W.-L.: Exoskeletons for gait assistance and training of the motor-impaired. In: Proc. IEEE 10th Int. Conf. Rehabilitation Robotics ICORR 2007, pp. 1108–1113 (2007)

    Google Scholar 

  2. Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: Proc. IEEE 10th Int. Conf. Rehabilitation Robotics ICORR 2007, pp. 401–407 (2007)

    Google Scholar 

  3. Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (alex) 17(1), 2–8 (2009)

    Google Scholar 

  4. Chou, C.-P., Hannaford, B.: Measurement and modeling of mckibben pneumatic artificial muscles 12(1), 90–102 (1996)

    Google Scholar 

  5. Colombo, G., Jorg, M., Dietz, V.: Driven gait orthosis to do locomotor training of paraplegic patients. In: Proc. 22nd Annual Int. Engineering in Medicine and Biology Society Conf. of the IEEE, vol. 4, pp. 3159–3163 (2000)

    Google Scholar 

  6. Ekkelenkamp, R., Veneman, J., van der Kooij, H.: Lopes: a lower extremity powered exoskeleton. In: Proc. IEEE Int. Robotics and Automation Conf., pp. 3132–3133 (2007)

    Google Scholar 

  7. Ferris, D.P., Lewis, C.L.: Robotic lower limb exoskeletons using proportional myoelectric control. In: Proc. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society EMBC 2009, pp. 2119–2124 (2009)

    Google Scholar 

  8. Hogan, N.: Impedance control: An approach to manipulation. In: Proc. American Control Conf., pp. 304–313 (1984)

    Google Scholar 

  9. Homma, K., Fukuda, O., Nagata, Y.: Study of a wire-driven leg rehabilitation system. In: Proc. IEEE/RSJ Int. Intelligent Robots and Systems Conf., vol. 2, pp. 1451–1456 (2002)

    Google Scholar 

  10. Homma, K., Fukuda, O., Sugawara, J., Nagata, Y., Usuba, M.: A wire-driven leg rehabilitation system: development of a 4-dof experimental system. In: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics AIM 2003, vol. 2, pp. 908–913 (2003)

    Google Scholar 

  11. Iwata, H., Yano, H., Nakaizumi, F.: Gait master: a versatile locomotion interface for uneven virtual terrain. In: Proc. IEEE Virtual Reality, pp. 131–137 (2001)

    Google Scholar 

  12. Kaczmarski, M., Czapiewski, M., Mianowski, K., Granosik, G.: Robot rehabilitacyjny RRH1. In: Proceedings of XI Krajowa Konferencja Robotyki (2010) (in Polish)

    Google Scholar 

  13. Kaczmarski, M., Granosik, G.: Rehabilitation robot RRH1. In: The Archive of Mechanical Engineering, vol. LVIII, pp. 103–113 (2011)

    Google Scholar 

  14. Klimasara, W.J., Dunaj, J., Stempniak, P., Pilat, Z.: Zrobotyzowane systemy renus-1 oraz renus-2 do wspomagania rehabilitacji ruchowej po udarach mózgu. In: Proceedings of XI Krajowa Konferencja Robotyki (2010) (in Polish)

    Google Scholar 

  15. Lunenburger, L., Colombo, G., Riener, R., Dietz, V.: Biofeedback in gait training with the robotic orthosis lokomat. In: Proc. 26th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society IEMBS 2004, vol. 2, pp. 4888–4891 (2004)

    Google Scholar 

  16. Novandy, B., Yoon, J., Manurung, A.: Interaction control of a programmable footpad-type gait rehabilitation robot for active walking on various terrains. In: Proc. IEEE Int. Conf. Rehabilitation Robotics, ICORR 2009, pp. 372–377 (2009)

    Google Scholar 

  17. Salter, R.: The biologic concept of continuous passive motion of synovial joints: The first 18 years of basic research and its clinical application. Clinical Orthopaedics and Related Research 12(2), 242 (1989)

    Google Scholar 

  18. Schmidt, H., Sorowka, D., Hesse, S., Bernhardt, R.: Robotic walking simulator for neurological gait rehabilitation. In: Proc. Second Joint (Engineering in Medicine and Biology 24th Annual Conf. and the Annual Fall Meeting of the Biomedical Engineering Society) EMBS/BMES Conf., vol. 3, pp. 2356–2357 (2002)

    Google Scholar 

  19. Schmidt, H., Volkmar, M., Werner, C., Helmich, I., Piorko, F., Kruger, J., Hesse, S.: Muscle activation patterns of healthy subjects during floor walking and stair climbing on an end-effector-based gait rehabilitation robot. In: Proc. IEEE 10th Int. Conf. Rehabilitation Robotics ICORR 2007, pp. 1077–1084 (2007)

    Google Scholar 

  20. Sun, J.Q., Rudolph, K., Dong, S., Lu, K.-Q.: Rehabilitation device with variable resistance and intelligent control. Medical Engineering & Physics, 249–255 (2005)

    Google Scholar 

  21. Tondu, B., Lopez, P.: Modeling and control of mckibben artificial muscle robot actuators 20(2), 15–38 (2000)

    Google Scholar 

  22. Young, J.A., Tolentino, M.: Neuroplasticity and its applications for rehabilitation. American Journal of Therapeutics, December 29 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Kaczmarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer London

About this paper

Cite this paper

Kaczmarski, M., Granosik, G. (2012). Exercise Programming and Control System of the Leg Rehabilitation Robot RRH1. In: Kozłowski, K. (eds) Robot Motion and Control 2011. Lecture Notes in Control and Information Sciences, vol 422. Springer, London. https://doi.org/10.1007/978-1-4471-2343-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2343-9_34

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2342-2

  • Online ISBN: 978-1-4471-2343-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics