Skip to main content

Abstract

For many years the single-headed gamma camera has been the standard instrument for almost all nuclear medicine imaging procedures. It is unlikely that we shall see a fundamental change in gamma camera technology but improvements are being made continuously. Advances in the design and stability of the photomultiplier tubes, the uniformity of the detector, and energy and temporal resolution have together halved the intrinsic resolution of the device in the last decade. Coupled with a computer capable of rapid data acquisition, processing, and display, we have an excellent instrument for emission tomography. In the next decade we can expect further improvements. Cameras with multiple heads are already available to increase the speed of data acquisition. Such increases will either be used to decrease imaging time or to reduce the radiation burden to the patient. Whilst the problems of uniformity and precision of orbit increase exponentially with the number of heads, experience and high quality engineering are providing the solution. The characteristics of the collimator are also important and 6–12-fold increases in sensitivity can be obtained by optimising the design. Modern tomographic cameras have a system resolution of 5 mm to 6 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henderson EB, Kahn JK, Corbett JR et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation 1988;78:1192–9.

    Article  PubMed  CAS  Google Scholar 

  2. Schofer J, Spielmann R, Schuchert A, Weber K, Schluter M. Iodine-123 metaiodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1988;12:1252–8.

    Article  PubMed  CAS  Google Scholar 

  3. van der Wall EE. Myocardial imaging with radiolabeled free fatty acids: applications and limitations. Eur J Nucl Med 1986;12:S12-S15.

    Article  Google Scholar 

  4. Visser FC, van Eenige MJ, Duwel CMB, Roos JP. Radioiodinated free fatty acids: can we measure myocardial metabolism? Eur J Nucl Med 1986;12:S20-S23.

    Article  PubMed  CAS  Google Scholar 

  5. Demaison L, Dubois F, Apparu M et al. Myocardial metabolism of radioiodinated methyl-branched fatty acids. J Nucl Med 1988;29:1230–6.

    PubMed  CAS  Google Scholar 

  6. Ugolini V, Hansen CL, Kulkarni PV, Jansen DE, Akers MS, Corbett JR. Abnormal myocardial fatty acid metabolism in dilated cardiomyopathy detected by iodine-123 phenyl-pentadecanoic acid and tomographic imaging. Am J Cardiol 1988;62:923–8.

    Article  PubMed  CAS  Google Scholar 

  7. Vyska K, Machulla HJ, Stremmel W et al. Regional myocardial free fatty acid extraction in normal and ischemic myocardium. Circulation 1988;78:1218–33.

    Article  PubMed  CAS  Google Scholar 

  8. Khaw BA, Strauss HW, Moore R et al. Myocardial damage delineated by indium-111 antimyosin Fab and technetium-99m pyrophosphate. J Nucl Med 1987;28:76–82.

    PubMed  CAS  Google Scholar 

  9. Braat SH, de Zwaan C, Teule J, Heidendal G, Wellens HJJ. Value of Indium-111 monoclonal antimyosin antibody for imaging in acute myocardial infarction. Am J Cardiol 1987;60: 725–6.

    Article  PubMed  CAS  Google Scholar 

  10. Yasuda T, Palacios IF, Dec GW et al. Indium 111-monoclonal antimyosin antibody imaging in the diagnosis of acute myocarditis. Circulation 1987;76:306–11.

    Article  PubMed  CAS  Google Scholar 

  11. Carrio I, Berna L, Ballester M et al. Indium-111 antimyosin scintigraphy to assess myocardial damage in patients with suspected myocarditis and cardiac rejection. J Nucl Med 1988;29:1893–900.

    PubMed  CAS  Google Scholar 

  12. Tamaki N, Yamada T, Matsumori A et al. Indium-111 antimyosin antibody imaging for detecting different stages of myocardial infarction: comparison with technetium-99m pyrophosphate imaging. J Nucl Med 1990;31:136–42.

    PubMed  CAS  Google Scholar 

  13. Gould KL, Goldstein RA, Mullani NA et al. Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using a generator-produced rubidium-82. J Am Coll Cardiol 1986;7:775–89.

    Article  PubMed  CAS  Google Scholar 

  14. Brunken R, Tillisch J, Schwaiger M et al. Regional perfusion, glucose metabolism and wall motion in chronic electrocardiographic Q-wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 1986;73: 951–63.

    Article  PubMed  CAS  Google Scholar 

  15. Tillisch J, Brunken R, Marshall R et al. Reversibility of cardiac wall motion abnormalities predicted by using positron tomography. N Engl J Med 1986;314:884–8.

    Article  PubMed  CAS  Google Scholar 

  16. Upton MJ. Cine computerized tomography. Int J Card Imaging 1987;2:209–21.

    Article  Google Scholar 

  17. Lanzer P, Garrett J, Lipton MJ et al. Quantitation of regional myocardial perfusion by cine computed tomography: pharmacologic changes in wall thickness. J Am Coll Cardiol 1986; 8:682–92.

    Article  PubMed  CAS  Google Scholar 

  18. Roig E, Chomka EV, Castaner A et al. Exercise ultrafast computed tomography for the detection of coronary artery disease. J Am Coll Cardiol 1989;13:1073–81.

    Article  PubMed  CAS  Google Scholar 

  19. Tanenbaum SR, Kondos GT, Veselik KE, Prendergast MR, Brundage BH, Chomka EV. Detection of calcific deposits in coronary arteries by ultrafast computed tomography and correlation with angiography. Am J Cardiol 1989;63:870–2.

    Article  PubMed  CAS  Google Scholar 

  20. Feiring AJ, Lipton MJ, Higgins CB et al. Measurement of myocardial perfusion by ultrafast CT. J Am Coll Cardiol 1985;5:500.

    Google Scholar 

  21. Wolfkiel CJ, Ferguson JL, Chomka EV et al. Measurement of myocardial blood flow by ultrafast computed tomography. Circulation 1987;76:1262–73.

    Article  PubMed  CAS  Google Scholar 

  22. Underwood SR, Firmin DN. Magnetic resonance of the cardiovascular system. Oxford: Blackwell’s Scientific Publications, 1990.

    Google Scholar 

  23. Pennell DJ, Underwood SR, Ell PJ, Swanton RH, Walker JM, Longmore DB. Dipyridamole magnetic resonance imaging: a comparison with thallium-201 emission tomography. Br Heart J 1990;64:362–9.

    Article  PubMed  CAS  Google Scholar 

  24. Pennell DJ, Underwood SR, Swanton RH, Walker JM, Ell PJ. Dobutamine thallium-201 myocardial perfusion tomography. J Am Coll Cardiol 1991 (in press).

    Google Scholar 

  25. Pennell DJ, Underwood SR, Manzara CC et al. Magnetic resonance imaging of reversible myocardial ischaemia during dobutamine stress. Proceedings of the Ninth Annual Meeting. Berkeley: Society of Magnetic Resonance in Medicine 1990,116 (abstract).

    Google Scholar 

  26. Longmore DB, Klipstein RH, Underwood SR et al. Dimensional accuracy of magnetic resonance in studies of the heart. Lancet 1985;i:1360–2.

    Article  Google Scholar 

  27. Underwood SR, Klipstein RH, Firmin DN et al. Magnetic resonance assessment of aortic and mitral regurgitation. Br Heart J 1986;56:455–62.

    Article  PubMed  CAS  Google Scholar 

  28. Kilner PJ, Firmin DN, Rees RSO et al. Valve and great vessel stenosis: assessment with magnetic resonance jet velocity mapping. Radiology 1991;178:229–35.

    PubMed  CAS  Google Scholar 

  29. Underwood SR, Firmin DN, Klipstein RH, Rees RSO, Longmore DB. Magnetic resonance velocity mapping: clinical application of a new technique. Br Heart J 1987;57:404–12.

    Article  PubMed  CAS  Google Scholar 

  30. Rees RSO, Firmin DN, Mohiaddin RH, Underwood SR, Longmore DB. Application of flow measurements by magnetic resonance velocity mapping to congenital heart disease. Am J Cardiol 1989;64:953–6.

    Article  PubMed  CAS  Google Scholar 

  31. Wilke N, Engels G, Stehling M et al. Myocardial perfusion study with serial ultrafast MR imaging at rest and during dipyridamole induced stress (abstract). J Mag Reson Imag 1991;1:205.

    Article  Google Scholar 

  32. Conway MA, Bristow JD, Blackledge MY, Rajagopalan B, Radda GK. Cardiac metabolism during exercise in healthy volunteers measured by 31P magnetic resonance spectroscopy. Br Heart J 1991;65:25–30.

    Article  PubMed  CAS  Google Scholar 

  33. Mohiaddin RH, Firmin DN, Underwood SR et al. Chemical shift magnetic resonance imaging of human atheroma. Br Heart J 1989;62:81–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pennell, D.J., Underwood, S.R., Costa, D.C., Ell, P.J. (1992). The Future. In: Thallium Myocardial Perfusion Tomography in Clinical Cardiology. Springer, London. https://doi.org/10.1007/978-1-4471-1857-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1857-2_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1859-6

  • Online ISBN: 978-1-4471-1857-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics