Skip to main content

Techniques for the Investigation of Age-Related Bone Loss and Osteoporosis in Archaeological Bone

  • Chapter
Bone Loss and Osteoporosis

Abstract

With increasing awareness of age-related bone loss and osteoporosis in modern Western populations, a growing number of studies have set out to investigate whether individuals in the past were similarly affected (Martin and Armelagos, 1979; Bennike and Bohr, 1990; Lees et al., 1993; Agarwal and Grynpas, 1996; Brickley and Howell, 1999; Drusini et al., 2000; Mays, 2000). Research has demonstrated that age-related bone loss and osteoporosis results in changes to cortical bone (Derisquebourg et al., 1994), structural changes to trabecular bone (at a gross and microscopic level [Jayasinghe, 1994]), and bone mass and density (Cummings et al., 1993). Bone turnover and age-related bone loss are highly complex processes (see Chapters 1 and 2, this volume). The interaction between bone loss in both cortical and trabecular bone throughout the skeleton allows a variety of possible approaches to the study of bone loss. A range of techniques have been developed, each of which allows assessment of a different aspect of bone loss. Although this area has generated a great deal of recent interest, the epidemiology of age-related bone loss and fragility fractures, both in clinical and archaeological contexts, is unclear. The history of the development of the disease is not yet fully understood and a range of possibilities is currently being explored. For example, (1994) suggest that increasing bone loss may be an evolutionary trend (see also Chapter 8, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, S.C. (2001). The influence of age and sex on trabecular architecture and bone mineral density in three British historical populations. Doctoral thesis, University of Toronto, Toronto.

    Google Scholar 

  • Agarwal, S.C. and Grynpas, M.D. (1996). Bone quantity and quality in past population. Anal. Rec. 249, 423–432.

    Article  Google Scholar 

  • Agarwal, S.C., Dimitriu, M., and Grynpas, M.D. (in press). Medieval trabecular bone architecture: The influence of age, sex and lifestyle. Am. J. Phys. Anthropol.

    Google Scholar 

  • Amling, M., Herden, S., Pösl, M., Hahn, M., Ritzel, H., and Delling, G. (1996). Heterogeneity of the skeleton: Comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J. Bone Miner. Res. 11, 36–45.

    Article  Google Scholar 

  • Aufderheide, A.C. and Rodriguez-Martin, C. (1998). The Cambridge Encyclopedia of Human Paleopathology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Banse, X., Devogelaer, J.P., Munting, E., Delloye, C., Cornu, O., and Grynpas, M. (2001). Inhomogeneity of human vertebral cancellous bone: Systematic density and structure patterns inside the vertebral body. Bone 28, 563–571.

    Article  Google Scholar 

  • Barnett, E. and Nordin, B.E.C. (1960). The radiological diagnosis of osteoporosis: A new approach. Clin. Radiol. 11, 166–174.

    Article  Google Scholar 

  • Bell. L.S. (1990). Palaeopathology and diagenesis: An evaluation of structural changes using backscattered electron imaging. J. Arch. Sci. 17, 85–102.

    Article  Google Scholar 

  • Bennike, P. and Bohr, H. (1990). Bone mineral content in the past and present. In C. Christiansen and K. Overgaard (eds) Third International Symposium on Osteoporosis. Osteopress. Copenhagen, pp. 89–91.

    Google Scholar 

  • Bergot, C., Laval-Jeantet, A.M., Preteux, F., and Meunier, A. (1988). Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis. Calcif. Tissue Int. 43, 143–149.

    Article  Google Scholar 

  • Bland, J.S., Brooks. D.H., Kent, D.J., and Fisher, W.H. (1989). Evaluation of the clinical significance of appendicular skeletal assessment by radiographie photodensitomistry. J. Manipulative Physiol. Ther. 12, 113–119.

    Google Scholar 

  • Brickley, M. (1998). Age-related bone loss and osteoporosis in archaeological bone: A study of two London collections. Redcross Way and Farringdon Street. Doctoral thesis, University of London. London.

    Google Scholar 

  • Brickley, M. (2000). The diagnosis of metabolic bone disease in archaeological bone. In M. Cox and S. Mays (eds) Human Osteology in Archaeology and Forensic Science. Greenwich Medical Media, London, pp. 183–198.

    Google Scholar 

  • Brickley, M. (2002). Recognition and understanding of age-related bone loss and osteoporosis-related fractures in the eighteenth and nineteenth centuries. In R. Arnott (ed.) The Archaeology of Medicine. British Archaeological Reports, British Series, Oxford, pp. 141–146.

    Google Scholar 

  • Brickley, M. (2002b). An investigation of historical and archaeological evidence for age-related bone loss and osteoporosis. Int. J. Osleoarchaeol. 12, 364–371.

    Article  Google Scholar 

  • Brickley, M. and Howell, P.G.T. (1999). Measurement of changes in trabecular bone structure with age in an archaeological population. J. Arch. Sci. 26. 151–157.

    Article  Google Scholar 

  • Brickley, M. and Waldron, T. (1998). Relationship between bone density and osteoarthritis in a skeletal population from London. Bone 22(3), 279–283.

    Article  Google Scholar 

  • Burr, D.B., Ruff, C.B., and Thompson, D.D. (1990). Patterns of skeletal histological change through time: Comparison of an archaic native American population with modern populations. Anat. Rec. 26. 307–313.

    Article  Google Scholar 

  • Carter, D.R., Bouxsein, M.L., and Marcus, R. (1992). New approaches for interpreting projected bone densitometry data. J. Bone Miner. Res. 7, 137–145.

    Article  Google Scholar 

  • Compston, J.E. (1994). Connectivity of cancellous bone: Assessment and mechanical implications. Bone 15. 463–466.

    Article  Google Scholar 

  • Compston, J.E. (1995). Bone density: BMC, BMD, or corrected BMD? Bone 16, 5–7.

    Google Scholar 

  • Compston, J.E., Mellish, R.W., and Garrahan, N.J. (1987). Age-related changes in iliac crest trabecular microanatomic bone structure in man. Bone 8, 289–292.

    Article  Google Scholar 

  • Cook, M., Molto, E., and Anderson, C. (1988). Possible case of hyperparathyroidism in a Roman period skeleton from the Dakhleh Oasis. Egypt, diagnosed using bone histomorphometry. Am. J. Phvs. Anthropol. 75, 23–30.

    Article  Google Scholar 

  • Croucher, P.I., Garrahan, N.J., and Compston, J.E. (1996). Assessment of cancellous bone structure: Comparison of strut analysis, trabecular bone pattern factor, and marrow space star volume. J. Bone Miner. Res. 11, 955–961.

    Article  Google Scholar 

  • Cummings, S.R., Black, D.M., Nevitt, M.C., Browner, W., Cauley, J., Ensrud, J., Genant, H.K., Palermo, L. et al. (1993). Bone density at various sites for prediction of hip fractures. Lancet 341, 72–75.

    Article  Google Scholar 

  • Dargent, P. and Breart, G. (1993). Epidemiology and risk factors of osteoporosis. Curr. Opin. Rheumatol. 5. 339–345.

    Article  Google Scholar 

  • Dequeker, J., Ortner, D.J., Stix, A.I., Cheng, X., Brys, P., and Boonen, S. (1997). Hip fracture and osteoporosis in a Xllth dynasty female skeleton from Lisht, Upper Egypt. J. Bone Miner. Res. 12, 881–888.

    Article  Google Scholar 

  • Derisquebourg, T., Dubois, P., Devogelaer, J., Duquesnoy, B., Nagent de Deuxchaisnes, C., Delcambre, B., and Marchandis, X. ( 1994). Automated computerized radiogrammetry of the second metacarpal and its correlation with absorptiometry of forearm and spine. Calcif. Tissue Int. 54, 461–465.

    Article  Google Scholar 

  • Drusini, A.G., Bredaroil, S., Carrara, N., and Bonati, M. (2000). Cortical bone dynamics and age-related osteopenia in a Longobard archaeological sample from three graveyards of the Veneto Region (Northeast Italy). Int. J. Osteoarchaeol. 10, 268–279.

    Article  Google Scholar 

  • Ebbesen, E.N., Thomsen, J.S., Beck-Nielsen, H., Nepper-Rasmussen, H.J., and Mosekilde, L. (1998). Vertebral bone density evaluated by dual energy X-ray absorptiometry and quantitative computed tomography in vitro. Bone 23, 283–290.

    Google Scholar 

  • Ekenman, I., Eriksson, A., and Lindgren, J. (1995). Bone density in Medieval skeletons. Calcif. Tissue Int. 56, 355–358.

    Article  Google Scholar 

  • Ericksen, M.F. (1980). Patteras of microscopic bone remodelling in three aboriginal American populations. In D.L. Brownman (ed.) Early Native Americans: Prehistoric Demography, Economy, and Technology. Houton, The Hague, pp. 239–270.

    Google Scholar 

  • Farquharson, M.J. (1996). Characterisation of Bone Tissue Using Coherently Scattered X-ray Photons. Doctoral thesis, University of London, London.

    Google Scholar 

  • Farquharson, M.J. and Brickley, M. (1997). Determination of mineral composition of archaeological bone using energy-dipersive low-angle X-ray scattering. Int. J. Osteoarchaeol. 7, 95–99.

    Article  Google Scholar 

  • Foldes, A.J., Moscovici, A., Popovtzer, M.M., Mogle, P., Urman, D., and Zias, J. (1995). Extreme osteoporosis in a sixth century skeleton from the Negev desert. Int. J. Osteoarchaeol. 5, 157–362.

    Article  Google Scholar 

  • Frigo, P. and Lang, C. (1995). Osteoporosis in a woman of the Early Bronze Age. N. Engl. J. Med. 333, 1468.

    Article  Google Scholar 

  • Gallagher, J.C. (1990). The pathogenesis of osteoporosis. Bone Miner. 9, 215–227.

    Article  Google Scholar 

  • Garrahan, N.J., Mellish, R.W., and Compston, J.E. (1986). A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J. Microsc. 142, 341–349.

    Article  Google Scholar 

  • Genant, H.K., Engelke, K., Fuerst, T., Gluer, C.C., Grampp, S., Harris, S.T., Jergas, M., Lang, T. et al. (1996). Noninvasive assessment of bone mineral and structure: State of the art. J. Bone. Miner. Res. 11, 707–730.

    Article  Google Scholar 

  • Geraets, W.G., Van der Stelt, P.F., and Elders, P.J. (1993). The radiographie trabecular bone pattern during menopause. Bone 14, 859–864.

    Article  Google Scholar 

  • Gordon, C.L., Lang, T.F., Augat, P., and Genant, H.K. (1998). Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos. Int. 8, 317–325.

    Article  Google Scholar 

  • Grampp, S., Jergas, M., Gluer, C.C., Lang, P., and Genant, H.K. (1993). Radiologie diagnosis of osteoporosis. Current methods and perspectives. Radiol. Clin. North Am. 31, 1133–1145.

    Google Scholar 

  • Grynpas, M.D., Acito, A., Dimitriu, M., Mertz, B.P., and Very, J.M. (1992). Changes in bone mineralization, architecture and mechanical properties due to long-term ( 1 year) administration of pamidronate (APD) to adult dogs. Osteoporos. Int. 2, 74–81.

    Article  Google Scholar 

  • Grynpas, M.D., Kasra, M., Dumitriu, M., Nespeca, R., Very, J.M., and Mertz, B.P. (1994). Recovery from pamidronate (APD): A two-year study in the dog. Calcif. Tissue Int. 55, 288–294.

    Article  Google Scholar 

  • Hadberg, L. and Nilsson, B.E. (1977). Can fracture of the femoral neck be predicted? Geriatrics 32, 55–61.

    Google Scholar 

  • Ives, R.A. (2002). An investigation of metacarpal radiogrammetry and age-related cortical bone loss in Post-Medieval London Collections. M.Phil, thesis, The University of Birmingham, Birmingham, UK.

    Google Scholar 

  • Jackes, M. (2000). Building the bases for paleodemographic analysis: Adult age determination. In M.A. Katzenberg and S.R. Saunders (eds) Biological Anthropology of the Human Skeleton. Wiley-Liss, New York, pp. 417–466.

    Google Scholar 

  • Jayasinghe, J.A.P. (1991). A study of change in human trabecular bone structure with age and during osteoporosis. Doctoral thesis, University of London, London.

    Google Scholar 

  • Jayasinghe, J.A.P., Jones, S.J., and Boyde, A. (1994). Three-dimensional photographic study of cancellous bone in human fourth lumbar vertebral bodies. Anat. & Embryol. (Berl.) 189, 259–274.

    Google Scholar 

  • Jergas, M., Breitsenseher, M., Gluer, C.C., Yu, W., and Genant, H.K. (1995). Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J. Bone Miner. Res. 10, 1101–1110.

    Article  Google Scholar 

  • Jergas, M. and Genant, H.K. (1993). Current methods and recent advances in the diagnosis of osteoporosis. Arthritis Rheum. 36, 1649–1662.

    Article  Google Scholar 

  • Kanis, J.A. (1994). Osteoporosis. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Kawashima, T. and Uhthoff, H.K. (1991). Pattern of bone loss of the proximal femur: A radiologie, densitometric and histomorphometric study. J. Orthop. Res. 9, 634–640.

    Article  Google Scholar 

  • Kleerekoper, M., Villanueva, A.R., Staneiu, J., Sudhaker Rao, D., and Parfitt, A.M. (1985). The role of threedimensional trabecular mico-structure in the pathogenesis of vertebral compression fractures. Calcif. Tissue Int. 37, 594–597.

    Article  Google Scholar 

  • Kneissel, M., Boyde, A., Hahn, M., Treschler-Nicola, M., Kalchhauser, G., Plenk, H., Jr. (1994). Age-and sexdependent cancellous bone changes in a 4000y BP population. Bone 15, 539–545.

    Article  Google Scholar 

  • Korstjens, C.M., Spruijt, R.J., Geraets, W.G., Mosekilde, L., and Van der Stelt, P.F. (1997). Reliability of an image analysis system for quantifying the radiographie trabecular pattern [letter]. IEEE Trans. Med. Imaging 16, 230–234.

    Article  Google Scholar 

  • Korstjens, C.M., Spruijt, R.J., Mosekilde, L., Geraets, W.G., and Van der Stelt, P.F. (1998). Agreement between radiographie and photographic trabecular patterns. Acta. Radiol. 39, 625–631.

    Article  Google Scholar 

  • Kruse, H.I.P. and Kuhlencordt, F. (1983). Studies in primary osteoporosis. In A. St John Dixon, R.G.G. Russell, and T.C.B. Stamp (eds) Osteoporosis, A Multi-Disciplinary Problem. Academic Press, London, pp. 149–152.

    Google Scholar 

  • Lapedes, D.N. (ed.) (1978). Mc Graw-Hill Encyclopaedia of the Geological Sciences. McGraw-Hill Inc., New York, pp. 153–155.

    Google Scholar 

  • Laughlin, W.S., Harper, A.B., and Thompson, D.D. (1979). New approaches to the pre-and post-contact history of Arctic peoples. Am. J. Phys, Anthropol. 51, 579–587.

    Article  Google Scholar 

  • Lees, B., Molleson, T., Arnett, T.R., and Stevenson, J.C. (1993). Differences in proximal femur bone density over two centuries. Lancet 341, 673–675.

    Article  Google Scholar 

  • Lundon, K., Dumitriu, M., and Grynpas, M.D. (1997). Supraphysiologic levels of testosterone affect cancellous and cortical bone in young female cynomolgus monkey. Calcif. Tissue Int. 60, 54–62.

    Article  Google Scholar 

  • Martin, D.L. and Armelagos, G.J. (1979). Morphometrics of compact bone: An example from Sudanese Nubia. Am. J. Phys. Anthropol. 51, 571–578.

    Article  Google Scholar 

  • Martin, D.L. and Armelagos, G.J. (1985). Skeletal remodeling and mineralisation as indicators of health: An example from prehistoric Sudanese Nubia. J. Hum. Evol. 14(5), 527–537.

    Article  Google Scholar 

  • Mays, S.A. (1996). Age-dependent cortical bone loss in a Medieval population. Int. J. Osteoarchaeol. 6, 144-154. Mays, S. (2000). Age dependent cortical bone loss in women from 18th and early 19th century London. Am. J. Phys. Anthropol. 112(3), 349–362.

    Article  Google Scholar 

  • Mays, S. (2001). Effects of age and occupation on cortical bone in a group of 18th-19th century British Men. Am. J. Phys. Anthropol. 116, 34–44.

    Article  Google Scholar 

  • Mays, S., Lees, B., and Stevenson, J. (1998). Age-dependent bone loss in the femur in a medieval population. Int. J. Osteoarchaeol. 8, 97–106.

    Article  Google Scholar 

  • Meema, H.E. and Meema, S. (1987). Postmenopausal osteoporosis: Simple screening method for diagnosis before structural failure. Radiology 164, 405–410.

    Google Scholar 

  • Mellish, R.W.E., Ferguson-Pell, M.W., Cochran, G.V.B., Lindsay, R., and Dempster, D.W. (1991). A new manual method for assessing two-dimensional cancellous bone structure: Comparison between iliac crest and lumbar vertebra. J. Bone Miner. Res. 6, 689–696.

    Article  Google Scholar 

  • Melton, J.L, III, Chrischilles, E.A., Cooper, C., Lane, A.W., and Riggs, L.B. (1992). Perspective, how many women have osteoporosis. J. Bone Miner. Res. 7, 1005–1010.

    Article  Google Scholar 

  • Mielke, J.H., Armelagos, G.J., and Van Gerven, D.P. (1972). Trabecular involution in femoral heads of a prehistoric (X-Group) population from Sudanese Nubia. Am. J. Phys. Anthropol. 36(1), 39–44.

    Article  Google Scholar 

  • Mosekilde, L. (1988). Age-related changes in vertebral trabecular bone architecture, assessed by a new method. Bone 9, 247–250.

    Article  Google Scholar 

  • Mosekilde, L. (1989). Sex differences in age-related loss of vertebral trabecular mass and structure— biomechanical consequences. Bone 10, 425–432.

    Article  Google Scholar 

  • Mosekilde, L. (1993). Vertebral structure and strength in vivo and in vitro. Calcif. Tissue. Int. 53(Suppl 1), S121–S125.

    Article  Google Scholar 

  • Neese, R.M. and Williams, G.C. (1994). Why We Get Sick. Times Books, New York.

    Google Scholar 

  • Nelson, D.A. and Koo, W.W.K. (1999). Interpretation of absorptiometric bone mass measurements in the growing skeleton: Issues and limitations. Calcif. Tissue Int. 65, 1–3.

    Article  Google Scholar 

  • Ortner, D.J. and Putschar, W.G.J. (1985). Identification of Pathological Conditions in Human Skeletal Remains (2nd edn.). Smithsonian Institution Press, Washington.

    Google Scholar 

  • Ott, S.M., O’Hanlan, M., Lipkin, E.W., and Newell-Morris, L. (1997). Evaluation of vertebral volumetric vs. aerial bone mineral density during growth. Bone 20, 553–556.

    Article  Google Scholar 

  • Parfitt, A.M. (1992). Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13(Suppl 2), S41–S47.

    Article  Google Scholar 

  • Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M., and Recker, R.R. (1987). Bone histomorphometry: Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610.

    Article  Google Scholar 

  • Pate, F.D. and Brown, K.A. (1985). The stability of bone strontium in the geochemical environment. J. Hum. Evol. 14, 483–491.

    Article  Google Scholar 

  • Peel, N. and Eastell, R. (1995). ABC of rheumatology: Osteoporosis. Brit. Med. J. 15, 310 (6985), 989-992.

    Google Scholar 

  • Pfeiffer, S. (2000). Paleohistology: Health and disease. In A. Katzenberg and S. Saunders (eds) Biological Anthropology of the Human Skeleton. Wilry-Liss, New York, pp. 287–302.

    Google Scholar 

  • Poulsen, L.W., Qvesel, D., Brixen, K., Vesterby, A., and Boldsen, J.L. (2001). Low bone mineral density in the femoral neck of medieval women: A result of multiparity? Bone 28, 454–458.

    Article  Google Scholar 

  • Richman, E.A., Ortner, D.J., and Schulter-Ellis, F.P. (1979). Differences in intracortical bone remodeling in three aboriginal American populations: Possible dietary factors. Calcif. Tissue Int. 28, 209–214.

    Article  Google Scholar 

  • Roberts, C. (2000). Trauma in biocultural perspective: Past, present and future work in Britain. In M. Cox and S. Mays (eds) Human Osteology in Archaeology and Forensic Science. Greenwich Medical Media, London, pp. 337–356.

    Google Scholar 

  • Roberts, C. and Manchester, K. (1995). The Archaeology of Disease 2nd edn. Cornell University press, New York.

    Google Scholar 

  • Roberts, C. and Wakely, J. (1992). Microscopical findings associated with the diagnosis of osteoporosis in palaeopathology. Int. J. Osteoarchaeol. 2, 23–30.

    Article  Google Scholar 

  • Ross, H.F. (1986). A new comparator for SEM Stereophotogrammetry. Scanning 8, 216–220.

    Article  Google Scholar 

  • Sambrook, P.N., Browne, C.D., Eisman, J.A., and Bourke, S.J. (1988). A case of crash fracture osteoporosis from late Roman Pella in Jordan. OSSA 13, 167–171.

    Google Scholar 

  • Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press, London.

    Google Scholar 

  • Singh, M., Nagrath, A.R., and Maini, P.S. (1970). Changes in the trabecular pattern of the upper end of the femur as an index of osteoporosis. J. Bone Joint Surg. Br. 52a, 457–467.

    Google Scholar 

  • Sneed, N.V. and Van Bree, K.M. (1990). Treating ununited fractures with electricity: Nursing implications. J. Gerentol. Nursing 16, 26–31.

    Google Scholar 

  • Stout, S.D. (1983). The application of histomorphometric analysis to ancient skeletal remains. Anthropos (Greece), 10, 60–71.

    Google Scholar 

  • Stout, S.D. (1989). Histomorphometric analysis of human skeletal remains. In M. Iscan and K. Kennedy (eds) Reconstruction of Life from the Skeleton. Alan R Liss, New York, pp. 41–52.

    Google Scholar 

  • Stout, S.D. and Lueck, R. (1995). Bone remodeling rates and skeletal maturation in three archaeological skeletal populations. Am. J. Phys. Anthropol. 93, 123–129.

    Article  Google Scholar 

  • Stout, S. and Simmons, D.J. (1979). Use of histology in ancient bone research. Yearbook of Phys. Anthropol. pp. 228–249.

    Google Scholar 

  • Spector, T.D. (1991). The epidemiology of osteoporosis. In J.C. Stevenson (ed.) Osteoporosis. Reed Healthcare, Guildford, pp. 7–9.

    Google Scholar 

  • Thompson, D.D. and Gunness-Hey, M.E. (1981). Bone mineral-osteon analysis of Yupik-Inupiaq skeletons. Am. J. Phys. Anthropol. 55(1), 1–7.

    Article  Google Scholar 

  • Thompson, P.W. (1991). Assessment of the skeleton. In J.C. Stevenson (ed.) Osteoporosis. Reed Healthcare, Guildford, pp. 19–22.

    Google Scholar 

  • Thomsen, J.S., Ebbesen, E.N., and Mosekilde, L. (2000). A new method of comprehensive static histomorphometry applied on human lumbar vertebral cancellous bone. Bone 27, 129–138.

    Article  Google Scholar 

  • Twomey, L., Taylor, J., and Furniss, B. (1983). Age changes in the bone density and structure of the lumbar vertebral column. J. Anat. 136, 15–25.

    Google Scholar 

  • Weaver, D. (1998). Osteoporosis in the bioarchaeology of women. In A.L. Grauer and P. Stuart-Macadam (eds) Sex and Gender in Paleopathological Perspective. Cambridge University Press, Cambridge, pp. 27–44.

    Google Scholar 

  • Weinstein, R.S., Simmons, D.J., and Lovejoy, C.O. (1981). Ancient bone disease in a peruvian mummy revealed by quantitative skeletal histomorphometry. Am. J. Phys. Anthropol. 54, 321–326.

    Article  Google Scholar 

  • Woolf, A.D. and St John Dixon, A. (1988). Osteoporosis a Clinical Guide. M. Dunitz, London.

    Google Scholar 

  • World Health Organisation. (1994). Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Report of a WHO study group, WHO technical report series 843. WHO, Geneva.

    Google Scholar 

  • Vesterby, A. (1990). Star volume of marrow space and trabeculae in iliac crest: Sampling procedure and correlation to star volume of first lumbar vertebra. Bone 11, 149–155.

    Article  Google Scholar 

  • Vesterby, A., Mosekilde. L., Gundersen, H.J., Meisen, F., Mosekilde, L., Holme, K., and Sorensen, S. (1991). Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 12, 219–224.

    Article  Google Scholar 

  • Virtama, P. and Helelä, X (1969). Radiographic measures of cortical bone. Variations in a normal population between 1 and 90 years of age. Acta Radiol. Suppl. 293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brickley, M.B., Agarwal, S.C. (2003). Techniques for the Investigation of Age-Related Bone Loss and Osteoporosis in Archaeological Bone. In: Agarwal, S.C., Stout, S.D. (eds) Bone Loss and Osteoporosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8891-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8891-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4708-8

  • Online ISBN: 978-1-4419-8891-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics