Skip to main content

Abstract

Hedgehog gene was first described in Drosophila in 1980 by Nobel laureates Drs. E. Wieschaus and C. Nusslein-Volhard. Over the past three decades, the hedgehog pathway has been shown to be a major regulator for cell differentiation, tissue polarity, cell proliferation, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to human cancer was established in 1996 through studies of a rare familiar disease, Gorlin syndrome. Follow-up studies from many laboratories reveal activation of this pathway in a range of human cancer types, including basal cell carcinomas (BCCs), medulloblastomas, leukemia, gastrointestinal, lung, ovarian, breast, and prostate cancers. Targeted inhibition of Hh signaling is now believed to be effective in treatment and prevention of human cancer. Even more exciting is the discovery and synthesis of a variety of specific inhibitors for this pathway. In this review, we summarize major advances in our understanding of Hh signaling activation in human cancer, useful mouse models for studying Hh-mediated carcinogenesis, the roles of Hh signaling in tumor initiation, promotion, tumor metastasis, and cancer stem cell maintenance as well as antagonists for Hh signaling and their clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    PubMed  CAS  Google Scholar 

  2. Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444

    PubMed  CAS  Google Scholar 

  3. Echelard Y et al (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    PubMed  CAS  Google Scholar 

  4. Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401–1416

    PubMed  CAS  Google Scholar 

  5. Chang DT et al (1994) Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development 120:3339–3353

    PubMed  CAS  Google Scholar 

  6. Roelink H et al (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76:761–775

    PubMed  CAS  Google Scholar 

  7. Epstein EH (2008) Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8:743–754

    PubMed  CAS  Google Scholar 

  8. Xie J (2005) Hedgehog signaling in prostate cancer. Future Oncol 1:331–338

    PubMed  CAS  Google Scholar 

  9. Xie J (2008) Hedgehog signaling pathway: development of antagonists for cancer therapy. Curr Oncol Rep 10:107–113

    PubMed  CAS  Google Scholar 

  10. Xie J (2008) Molecular biology of basal and squamous cell carcinomas. Adv Exp Med Biol 624:241–251

    PubMed  CAS  Google Scholar 

  11. Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812

    PubMed  CAS  Google Scholar 

  12. Ingham PW, Placzek M (2006) Orchestrating ontogenesis: variations on a theme by sonic hedgehog. Nat Rev Genet 7:841–850

    PubMed  CAS  Google Scholar 

  13. Sasaki H, Hui C, Nakafuku M, Kondoh H (1997) A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124:1313–1322

    PubMed  CAS  Google Scholar 

  14. Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10:634–642

    PubMed  CAS  Google Scholar 

  15. McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114

    PubMed  CAS  Google Scholar 

  16. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087, doi:10.1101/gad.938601

    PubMed  CAS  Google Scholar 

  17. Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354

    PubMed  CAS  Google Scholar 

  18. Lee JJ et al (1994) Autoproteolysis in hedgehog protein biogenesis. Science 266:1528–1537

    PubMed  CAS  Google Scholar 

  19. Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259

    PubMed  CAS  Google Scholar 

  20. Porter JA et al (1995) The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374:363–366

    PubMed  CAS  Google Scholar 

  21. Buglino JA, Resh MD (2008) Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 283:22076–22088

    PubMed  CAS  Google Scholar 

  22. Kawakami T et al (2002) Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development 129:5753–5765

    PubMed  CAS  Google Scholar 

  23. Ma Y et al (2002) Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111:63–75, doi:S0092867402009777 [pii]

    PubMed  CAS  Google Scholar 

  24. Caspary T et al (2002) Mouse dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr Biol 12:1628–1632, doi:S0960982202011478 [pii]

    PubMed  CAS  Google Scholar 

  25. Dierker T, Dreier R, Petersen A, Bordych C, Grobe K (2009) Heparan sulfate-modulated, metalloprotease-mediated sonic hedgehog release from producing cells. J Biol Chem 284:8013–8022

    PubMed  CAS  Google Scholar 

  26. Beckett K, Franch-Marro X, Vincent JP (2008) Glypican-mediated endocytosis of Hedgehog has opposite effects in flies and mice. Trends Cell Biol 18:360–363

    PubMed  CAS  Google Scholar 

  27. Lum L et al (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299:2039–2045

    PubMed  CAS  Google Scholar 

  28. Baena-Lopez LA, Rodriguez I, Baonza A (2008) The tumor suppressor genes dachsous and fat modulate different signalling pathways by regulating dally and dally-like. Proc Natl Acad Sci USA 105:9645–9650

    PubMed  CAS  Google Scholar 

  29. Toyoda H, Kinoshita-Toyoda A, Fox B, Selleck SB (2000) Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem 275:21856–21861

    PubMed  CAS  Google Scholar 

  30. Bellaiche Y, The I, Perrimon N (1998) Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394:85–88

    PubMed  CAS  Google Scholar 

  31. Koziel L, Kunath M, Kelly OG, Vortkamp A (2004) Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 6:801–813

    PubMed  CAS  Google Scholar 

  32. Stone DM et al (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384:129–134

    PubMed  CAS  Google Scholar 

  33. Taipale J, Cooper MK, Maiti T, Beachy PA (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418:892–897

    PubMed  CAS  Google Scholar 

  34. Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397:617–621

    PubMed  CAS  Google Scholar 

  35. Martinelli DC, Fan CM (2007) Gas1 extends the range of Hedgehog action by facilitating its signaling. Genes Dev 21:1231–1243

    PubMed  CAS  Google Scholar 

  36. Seppala M et al (2007) Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog. J Clin Invest 117:1575–1584

    PubMed  CAS  Google Scholar 

  37. Allen BL, Tenzen T, McMahon AP (2007) The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev 21:1244–1257

    PubMed  CAS  Google Scholar 

  38. Okada A et al (2006) Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444:369–373

    PubMed  CAS  Google Scholar 

  39. Tenzen T et al (2006) The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell 10:647–656

    PubMed  CAS  Google Scholar 

  40. Zhang W, Kang JS, Cole F, Yi MJ, Krauss RS (2006) Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev Cell 10:657–665

    PubMed  CAS  Google Scholar 

  41. Yao S, Lum L, Beachy P (2006) The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125:343–357

    PubMed  CAS  Google Scholar 

  42. Capurro MI et al (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 14:700–711

    PubMed  CAS  Google Scholar 

  43. Yavari A et al (2010) Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell 19:54–65

    PubMed  CAS  Google Scholar 

  44. Khaliullina H et al (2009) Patched regulates Smoothened trafficking using lipoprotein-derived lipids. Development 136:4111–4121

    PubMed  CAS  Google Scholar 

  45. Callejo A, Culi J, Guerrero I (2008) Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci USA 105:912–917

    PubMed  CAS  Google Scholar 

  46. Bijlsma MF et al (2006) Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol 4:e232

    PubMed  Google Scholar 

  47. Philipp M et al (2008) Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase. Mol Biol Cell 19:5478–5489

    PubMed  CAS  Google Scholar 

  48. Ogden SK et al (2008) G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456:967–970

    PubMed  CAS  Google Scholar 

  49. Molnar C, Holguin H, Mayor F Jr, Ruiz-Gomez A, de Celis JF (2007) The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc Natl Acad Sci USA 104:7963–7968

    PubMed  CAS  Google Scholar 

  50. Riobo NA, Saucy B, Dilizio C, Manning DR (2006) Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci USA 103:12607–12612

    PubMed  CAS  Google Scholar 

  51. Jia J, Tong C, Wang B, Luo L, Jiang J (2004) Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 432:1045–1050

    PubMed  CAS  Google Scholar 

  52. Zhang C, Williams EH, Guo Y, Lum L, Beachy PA (2004) Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci USA 101:17900–17907

    PubMed  CAS  Google Scholar 

  53. Zhao Y, Tong C, Jiang J (2007) Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450:252–258

    PubMed  CAS  Google Scholar 

  54. Corbit KC et al (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437:1018–1021

    PubMed  CAS  Google Scholar 

  55. Huangfu D et al (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87

    PubMed  CAS  Google Scholar 

  56. May SR et al (2005) Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287:378–389

    PubMed  CAS  Google Scholar 

  57. Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102:11325–11330

    PubMed  CAS  Google Scholar 

  58. Zhang Q, Davenport JR, Croyle MJ, Haycraft CJ, Yoder BK (2005) Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737(orpk) mutant mice. Lab Invest 85:45–64

    PubMed  CAS  Google Scholar 

  59. Hoover AN et al (2008) C2cd3 is required for cilia formation and Hedgehog signaling in mouse. Development 135:4049–4058

    PubMed  CAS  Google Scholar 

  60. Scholey JM, Anderson KV (2006) Intraflagellar transport and cilium-based signaling. Cell 125:439–442

    PubMed  CAS  Google Scholar 

  61. Cortellino S et al (2009) Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4. Dev Biol 325:225–237

    PubMed  CAS  Google Scholar 

  62. Haycraft CJ et al (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53

    PubMed  Google Scholar 

  63. Wang Y, Zhou Z, Walsh CT, McMahon AP (2009) Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci USA 106:2623–2628

    PubMed  CAS  Google Scholar 

  64. Wilson CW, Chen MH, Chuang PT (2009) Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS ONE 4:e5182

    PubMed  Google Scholar 

  65. Rohatgi R, Milenkovic L, Corcoran RB, Scott MP (2009) Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci USA 106:3196–3201

    PubMed  CAS  Google Scholar 

  66. Han YG et al (2009) Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 15:1062–1065

    PubMed  CAS  Google Scholar 

  67. Wong SY et al (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 15:1055–1061

    PubMed  CAS  Google Scholar 

  68. Kovacs JJ et al (2008) Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 320:1777–1781

    PubMed  CAS  Google Scholar 

  69. Chen MH et al (2009) Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23:1910–1928

    PubMed  CAS  Google Scholar 

  70. Jia J et al (2009) Suppressor of fused inhibits mammalian Hedgehog signaling in the absence of cilia. Dev Biol 330:452–460

    PubMed  CAS  Google Scholar 

  71. Cheung HO et al (2009) The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2:ra29

    PubMed  Google Scholar 

  72. Endoh-Yamagami S et al (2009) The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol 19:1320–1326

    PubMed  CAS  Google Scholar 

  73. Wilson CW et al (2009) Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature 459:98–102

    PubMed  CAS  Google Scholar 

  74. Merchant M et al (2005) Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol Cell Biol 25:7054–7068

    PubMed  CAS  Google Scholar 

  75. Chen MH, Gao N, Kawakami T, Chuang PT (2005) Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development. Mol Cell Biol 25:7042–7053

    PubMed  CAS  Google Scholar 

  76. Eggenschwiler JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412:194–198

    PubMed  CAS  Google Scholar 

  77. Reiter JF, Skarnes WC (2006) Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition. Genes Dev 20:22–27

    PubMed  CAS  Google Scholar 

  78. Varjosalo M et al (2008) Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell 133:537–548

    PubMed  CAS  Google Scholar 

  79. Evangelista M et al (2008) Kinome siRNA screen identifies regulators of ciliogenesis and hedgehog signal transduction. Sci Signal 1:ra7

    PubMed  Google Scholar 

  80. Svard J et al (2006) Genetic elimination of suppressor of fused reveals an essential repressor function in the Mammalian hedgehog signaling pathway. Dev Cell 10:187–197

    PubMed  Google Scholar 

  81. Aszterbaum M et al (1999) Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 5:1285–1291

    PubMed  CAS  Google Scholar 

  82. Hahn H et al (1998) Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4:619–622

    PubMed  CAS  Google Scholar 

  83. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113

    PubMed  CAS  Google Scholar 

  84. Barnfield PC, Zhang X, Thanabalasingham V, Yoshida M, Hui CC (2005) Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms. Differentiation 73:397–405

    PubMed  CAS  Google Scholar 

  85. Kise Y, Morinaka A, Teglund S, Miki H (2009) Sufu recruits GSK3beta for efficient ­processing of Gli3. Biochem Biophys Res Commun 387:569–574

    PubMed  CAS  Google Scholar 

  86. Yue S, Chen Y, Cheng SY (2009) Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene 28:492–499

    PubMed  CAS  Google Scholar 

  87. Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B (1988) The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332:371–374

    PubMed  CAS  Google Scholar 

  88. Ruppert JM et al (1988) The GLI-Kruppel family of human genes. Mol Cell Biol 8:3104–3113

    PubMed  CAS  Google Scholar 

  89. Sheng T, Chi S, Zhang X, Xie J (2006) Regulation of Gli1 localization by the cAMP/protein kinase A signaling axis through a site near the nuclear localization signal. J Biol Chem 281:9–12

    PubMed  CAS  Google Scholar 

  90. Kogerman P et al (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1:312–319

    PubMed  CAS  Google Scholar 

  91. Stecca B et al (2007) Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA 104:5895–5900

    PubMed  CAS  Google Scholar 

  92. Pan Y, Bai CB, Joyner AL, Wang B (2006) Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 26:3365–3377

    PubMed  CAS  Google Scholar 

  93. Huntzicker EG et al (2006) Dual degradation signals control Gli protein stability and tumor formation. Genes Dev 20:276–281

    PubMed  CAS  Google Scholar 

  94. Wang B, Li Y (2006) Evidence for the direct involvement of βTrCP in Gli3 protein processing. Proc Natl Acad Sci USA 103:33–38

    PubMed  CAS  Google Scholar 

  95. Di Marcotullio L et al (2006) Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 8:1415–1423

    PubMed  Google Scholar 

  96. Jiang J (2006) Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle 5:2457–2463

    PubMed  CAS  Google Scholar 

  97. Canettieri G et al (2010) Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol 12:132–142

    PubMed  CAS  Google Scholar 

  98. Huangfu D, Anderson KV (2006) Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133:3–14

    PubMed  CAS  Google Scholar 

  99. Cheng SY, Bishop JM (2002) Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA 99:5442–5447

    PubMed  CAS  Google Scholar 

  100. Hahn H et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    PubMed  CAS  Google Scholar 

  101. Johnson RL et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671

    PubMed  CAS  Google Scholar 

  102. Epstein E Jr (2001) Genetic determinants of basal cell carcinoma risk. Med Pediatr Oncol 36:555–558

    PubMed  Google Scholar 

  103. Aszterbaum M, Beech J, Epstein EH Jr (1999) Ultraviolet radiation mutagenesis of hedgehog pathway genes in basal cell carcinomas. J Investig Dermatol Symp Proc 4:41–45

    PubMed  CAS  Google Scholar 

  104. Xie J et al (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391:90–92

    PubMed  CAS  Google Scholar 

  105. Lam CW et al (1999) A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18:833–836

    PubMed  CAS  Google Scholar 

  106. Reifenberger J et al (2005) Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 152:43–51

    PubMed  CAS  Google Scholar 

  107. Reifenberger J et al (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803

    PubMed  CAS  Google Scholar 

  108. Couve-Privat S, Bouadjar B, Avril MF, Sarasin A, Daya-Grosjean L (2002) Significantly high levels of ultraviolet-specific mutations in the smoothened gene in basal cell carcinomas from DNA repair-deficient xeroderma pigmentosum patients. Cancer Res 62:7186–7189

    PubMed  CAS  Google Scholar 

  109. Xie J et al (2001) A role of PDGFRalpha in basal cell carcinoma proliferation. Proc Natl Acad Sci USA 98:9255–9259

    PubMed  CAS  Google Scholar 

  110. Athar M et al (2004) Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res 64:7545–7552

    PubMed  CAS  Google Scholar 

  111. Berman DM et al (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425:846–851

    PubMed  CAS  Google Scholar 

  112. Watkins DN et al (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313–317

    PubMed  CAS  Google Scholar 

  113. Wang DH et al (2010) Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology 138:1810–1822

    PubMed  CAS  Google Scholar 

  114. Bailey JM, Mohr AM, Hollingsworth MA (2009) Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene 28:3513–3525

    PubMed  CAS  Google Scholar 

  115. Feldmann G et al (2008) An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 7:2725–2735

    PubMed  CAS  Google Scholar 

  116. Thayer SP et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851–856

    PubMed  CAS  Google Scholar 

  117. Pasca di Magliano M et al (2006) Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 20:3161–3173

    PubMed  CAS  Google Scholar 

  118. Nolan-Stevaux O et al (2009) GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23:24–36

    PubMed  CAS  Google Scholar 

  119. Fan L et al (2004) Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145:3961–3970

    PubMed  CAS  Google Scholar 

  120. Karhadkar SS et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431:707–712

    PubMed  CAS  Google Scholar 

  121. Sanchez P et al (2004) Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA 101:12561–12566

    PubMed  CAS  Google Scholar 

  122. Sheng T et al (2004) Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 3:29

    PubMed  Google Scholar 

  123. He J et al (2006) Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J Biol Chem 281:35598–35602

    PubMed  CAS  Google Scholar 

  124. Ehtesham M et al (2007) Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 26(39):5752–5761

    PubMed  CAS  Google Scholar 

  125. Bhattacharya R et al (2008) Role of hedgehog signaling in ovarian cancer. Clin Cancer Res 14:7659–7666

    PubMed  CAS  Google Scholar 

  126. Fiaschi M, Rozell B, Bergstrom A, Toftgard R (2009) Development of mammary tumors by conditional expression of GLI1. Cancer Res 69:4810–4817

    PubMed  CAS  Google Scholar 

  127. Kasper M, Jaks V, Fiaschi M, Toftgard R (2009) Hedgehog signalling in breast cancer. Carcinogenesis 30:903–911

    PubMed  CAS  Google Scholar 

  128. Liao X et al (2009) Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 30:131–140

    PubMed  CAS  Google Scholar 

  129. Lindemann RK (2008) Stroma-initiated hedgehog signaling takes center stage in B-cell lymphoma. Cancer Res 68:961–964

    PubMed  CAS  Google Scholar 

  130. Dierks C et al (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14:238–249

    PubMed  CAS  Google Scholar 

  131. Zhao C et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458:776–779

    PubMed  CAS  Google Scholar 

  132. Read TA et al (2009) Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15:135–147

    PubMed  CAS  Google Scholar 

  133. Hofmann I et al (2009) Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell 4:559–567

    PubMed  CAS  Google Scholar 

  134. Gao J et al (2009) Hedgehog signaling is dispensable for adult hematopoietic stem cell ­function. Cell Stem Cell 4:548–558

    PubMed  CAS  Google Scholar 

  135. Siggins SL et al (2009) The Hedgehog receptor Patched1 regulates myeloid and lymphoid progenitors by distinct cell-extrinsic mechanisms. Blood 114:995–1004

    PubMed  CAS  Google Scholar 

  136. Merchant A, Joseph G, Wang Q, Brennan S, Matsui W (2010) Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood 115:2391–2396

    PubMed  CAS  Google Scholar 

  137. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    PubMed  CAS  Google Scholar 

  138. Sims-Mourtada J et al (2006) Hedgehog: an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response. Clin Cancer Res 12:6565–6572

    PubMed  CAS  Google Scholar 

  139. Olive KP et al (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461

    PubMed  CAS  Google Scholar 

  140. Yoshikawa R et al (2008) Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy. Br J Cancer 98:1670–1674

    PubMed  CAS  Google Scholar 

  141. Huang S et al (2006) Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis 27:1334–1340

    PubMed  CAS  Google Scholar 

  142. Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T, McKinnon PJ (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene. 2007 Sep 27;26(44):6442–7. Epub 2007 Apr 23.

    Google Scholar 

  143. Kubo M et al (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64:6071–6074

    PubMed  CAS  Google Scholar 

  144. Mancuso M et al (2004) Basal cell carcinoma and its development: insights from radiation-induced tumors in Ptch1-deficient mice. Cancer Res 64:934–941

    PubMed  CAS  Google Scholar 

  145. Ellis T et al (2003) Patched 1 conditional null allele in mice. Genesis 36:158–161

    PubMed  CAS  Google Scholar 

  146. Adolphe C, Hetherington R, Ellis T, Wainwright B (2006) Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res 66:2081–2088

    PubMed  CAS  Google Scholar 

  147. Grachtchouk V et al (2003) The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO J 22:2741–2751, doi:10.1093/emboj/cdg271

    PubMed  CAS  Google Scholar 

  148. Mao J et al (2006) A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 66:10171–10178

    PubMed  CAS  Google Scholar 

  149. Grachtchouk M et al (2000) Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 24:216–217, doi:10.1038/73417

    PubMed  CAS  Google Scholar 

  150. Nilsson M et al (2000) Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci USA 97:3438–3443

    PubMed  CAS  Google Scholar 

  151. Oro AE et al (1997) Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276:817–821

    PubMed  CAS  Google Scholar 

  152. Romer JT et al (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6:229–240

    PubMed  CAS  Google Scholar 

  153. Nieuwenhuis E et al (2006) Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol 26:6609–6622

    PubMed  CAS  Google Scholar 

  154. Lee Y et al (2006) Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res 66:6964–6971

    PubMed  CAS  Google Scholar 

  155. Lee Y et al (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26:6442–6447

    PubMed  CAS  Google Scholar 

  156. Svard J, Rozell B, Toftgard R, Teglund S (2009) Tumor suppressor gene co-operativity in compound Patched1 and suppressor of fused heterozygous mutant mice. Mol Carcinog 48:408–419

    PubMed  Google Scholar 

  157. Hallahan AR et al (2004) The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64:7794–7800

    PubMed  CAS  Google Scholar 

  158. Schuller U et al (2008) Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14:123–134

    PubMed  CAS  Google Scholar 

  159. Yang ZJ et al (2008) Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14:135–145

    PubMed  CAS  Google Scholar 

  160. Ward RJ et al (2009) Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 69:4682–4690

    PubMed  CAS  Google Scholar 

  161. Feldmann G et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67:2187–2196

    PubMed  CAS  Google Scholar 

  162. Tian H et al (2009) Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA 106:4254–4259

    PubMed  CAS  Google Scholar 

  163. Teglund S, Toftgard R (2010) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805:181–208

    PubMed  CAS  Google Scholar 

  164. Yang L, Xie G, Fan Q, Xie J (2010) Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 29:469–481

    PubMed  Google Scholar 

  165. Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748

    PubMed  CAS  Google Scholar 

  166. Yauch RL et al (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455:406–410

    PubMed  CAS  Google Scholar 

  167. Sanchez P, Ruiz i Altaba A (2005) In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice. Mech Dev 122:223–230

    PubMed  CAS  Google Scholar 

  168. Berman DM et al (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561

    PubMed  CAS  Google Scholar 

  169. Tremblay MR et al (2009) Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 52:4400–4418

    PubMed  CAS  Google Scholar 

  170. Xie J, Garrossian M (2009) Cyclopamine tartrate salt and uses thereof. US Patent WO 2009099625 20090813.

    Google Scholar 

  171. Von Hoff DD et al (2009) Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361:1164–1172

    Google Scholar 

  172. Hyman JM et al (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci USA 106:14132–14137

    PubMed  CAS  Google Scholar 

  173. Rudin CM et al (2009) Treatment of medulloblastoma with Hedgehog pathway inhibitor GDC-0449. N Engl J Med 361(12):1173–1178

    PubMed  CAS  Google Scholar 

  174. So PL, Fujimoto MA, Epstein EH Jr (2008) Pharmacologic retinoid signaling and physiologic retinoic acid receptor signaling inhibit basal cell carcinoma tumorigenesis. Mol Cancer Ther 7:1275–1284

    PubMed  CAS  Google Scholar 

  175. Kim J et al (2010) Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17:388–399

    PubMed  CAS  Google Scholar 

  176. Slusarz A et al (2010) Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res 70:3382–3390

    PubMed  CAS  Google Scholar 

  177. Liu H, Gu D, Xie J (2011) Clinical implications of hedgehog signaling pathway inhibitors. Chin J Cancer 30(1):13–26.

    Google Scholar 

Download references

Acknowledgments

Current research in my laboratory is supported by grants from the National Cancer Institute CA94160 and Wells Center for Pediatric Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwu Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xie, J., Epstein, E. (2011). Activation of Hedgehog Signaling in Human Cancer. In: Xie, J. (eds) Hedgehog signaling activation in human cancer and its clinical implications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8435-7_7

Download citation

Publish with us

Policies and ethics